Rasleen commited on
Commit
dede013
·
verified ·
1 Parent(s): dc120c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -166
app.py CHANGED
@@ -1,190 +1,102 @@
1
- # Transformers and its models
2
- #import transformers
3
-
4
- # For Image Processing
5
- #from transformers import ViTImageProcessor
6
-
7
- # For Model
8
- #from transformers import ViTModel, ViTConfig, pipeline
9
- import insightface
10
- from insightface.app import FaceAnalysis
11
-
12
- # For data augmentation
13
- from torchvision import transforms, datasets
14
- from flask import request
15
- # For GPU
16
- #from transformers import set_seed
17
- #from torch.optim import AdamW
18
- #from accelerate import Accelerator, notebook_launcher
19
-
20
- # For Data Loaders
21
- import datasets
22
- from torch.utils.data import Dataset, DataLoader
23
-
24
- # For Display
25
- #from tqdm.notebook import tqdm
26
-
27
- # Other Generic Libraries
28
- import torch
29
- from PIL import Image
30
- import cv2
31
  import os
 
 
 
32
  import streamlit as st
33
- import gc
 
 
34
  from glob import glob
35
- import shutil
36
- import pandas as pd
37
- import numpy as np
38
- #import matplotlib.pyplot as plt
39
- from io import BytesIO
40
  import torch.nn.functional as F
41
 
42
- # Set the device (GPU or CPU)
43
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
44
 
45
- # Initialse Globle Variables
46
- MODEL_TRANSFORMER = 'google/vit-base-patch16-224'
47
- BATCH_SIZE = 8
48
-
49
- # Set Paths
50
  data_path = 'employees'
51
- model_path = 'vit_pytorch_GPU_1.pt'
52
  webcam_path = 'captured_image.jpg'
53
 
54
- IMAGE_SHAPE = 640
55
-
56
- # Set Title
57
  st.title("AIML-Student Attendance System")
58
-
59
- # Read images from directory
60
- image_paths = []
61
- image_file = glob(os.path.join(data_path, '*.jpg'))
62
- #st.write(image_file)
63
- image_paths.extend(image_file)
64
- #st.write('input path size:', len(image_paths))
65
- #st.write(image_paths)
66
-
67
- # Initialize the app
68
- app = FaceAnalysis(name="buffalo_l") # buffalo_l includes ArcFace model
69
- app.prepare(ctx_id=-1, det_size=(IMAGE_SHAPE, IMAGE_SHAPE)) # Use ctx_id=-1 if you want CPU, and ctx_id=0 for GPU
70
-
71
- # Define the ML model - Evaluation function
72
- def prod_function(app, prod_path, webcam_path):
73
- webcam_img = Image.open(webcam_path)
74
- np_webcam = np.array(webcam_img) # Convert to NumPy array
75
- cv2_webcam = cv2.cvtColor(np_webcam, cv2.COLOR_RGB2BGR) # Convert RGB (PIL) to BGR (OpenCV)
76
 
77
- webcam_emb = app.get(cv2_webcam, max_num=1)
78
- webcam_emb = webcam_emb[0].embedding
79
- webcam_emb = torch.from_numpy(np.array(webcam_emb))
80
 
81
- similarity_score = []
 
 
82
  for path in prod_path:
83
  img = cv2.imread(path)
84
- face_embedding = app.get(img, max_num=1)
85
- face_embedding = face_embedding[0].embedding
86
- face_embedding = torch.from_numpy(np.array(face_embedding))
87
-
88
- similarity_score.append(F.cosine_similarity(face_embedding,webcam_emb, dim=0))
89
- #distance = F.pairwise_distance(emb, emb_prod)
90
- #prod_preds.append(distance)
91
- similarity_score = torch.from_numpy(np.array(similarity_score))
92
- return similarity_score #prod_preds
93
 
 
 
 
 
94
  about_tab, app_tab = st.tabs(["About the app", "Face Recognition"])
95
- # About the app Tab
96
  with about_tab:
97
- st.markdown(
98
- """
99
- # 👁️‍🗨️ AI-Powered Face Recognition Attendance System
100
- Effortless, Secure, and Accurate Attendance with Vision Transformer Technology
101
-
102
- An intelligent, facial recognition-based attendance solution that redefines how organizations manage employee presence. By leveraging cutting-edge computer vision and AI, the app automates attendance tracking with speed, precision, and reliability—no timecards, no fingerprint scans, just a glance.
103
-
104
- ## 🎯 Project Objective
105
- To eliminate outdated, manual attendance methods with a seamless, contactless facial recognition system. Our solution not only improves the accuracy of attendance logs but also boosts workplace security and streamlines HR operations—all in real time.
106
- Employees are simply scanned as they enter or leave the premises. Their attendance is automatically logged, reducing the risk of buddy punching, manual entry errors, and delays in record-keeping.
107
-
108
- ## 🧠 How It Works: The AI in Action
109
- At the core of this app is Google’s Vision Transformer (ViT) architecture, trained on the Labeled Faces in the Wild (LFW) dataset for robust, real-world face recognition.
110
-
111
- - **Face Detection & Feature Extraction**
112
- The model scans an employee’s face and extracts a high-dimensional representation of their unique features.
113
-
114
- - **Identity Matching with Confidence Scoring**
115
- The scanned features are compared to stored profiles. If the confidence score crosses a threshold, the model confirms the match and automatically marks attendance.
116
-
117
- - **Real-Time Logging**
118
- The app logs entry and exit times in real-time, providing live dashboards and attendance reports for HR and management.
119
-
120
- ## 🏗️ About the Architecture: Vision Transformer (ViT)
121
- The Vision Transformer (ViT) brings the power of transformer models—originally created for language—to the world of images. Here's how it works:
122
-
123
- - An input image is split into fixed-size non-overlapping patches.
124
- - Each patch is flattened and embedded into a higher-dimensional space.
125
- - These embeddings are fed into a transformer encoder, which learns complex spatial and contextual relationships across the entire image using multi-head self-attention.
126
- - ViT’s ability to capture global dependencies enables it to outperform traditional CNNs when trained on sufficient data.
127
-
128
- This makes it ideal for high-accuracy face recognition in dynamic, real-world environments.
129
-
130
- ## 📚 About the Dataset: Labeled Faces in the Wild (LFW)
131
- To train the model, we used the renowned Labeled Faces in the Wild (LFW) dataset, consisting of 13,000+ facial images, 5,749 individuals, each shown in diverse lighting, angles, and backgrounds. Sourced from real-world photographs of public figures. Benchmark dataset for tasks like face verification and recognition. The diversity in LFW ensures our model is resilient to variations in appearance, making it highly reliable in real-world workplace scenarios.
132
-
133
- ## ✅ Key Features
134
- - Fast, contactless attendance logging
135
- - High-security identity verification
136
- - Real-time data and analytics
137
- - Powered by state-of-the-art Vision Transformer architecture
138
- - Eliminates manual records, reduces fraud, enhances efficiency
139
-
140
- ## 👥 Use Cases
141
- - Corporate Offices: Accurate time tracking and security for large workforces
142
- - Factories & Warehouses: Contactless attendance in high-throughput environments
143
- - Educational Institutions: Seamless student and staff attendance
144
- - Healthcare & Public Services: Ensures hygienic, automated check-ins
145
-
146
- ## 🚀 Future Scope
147
- Looking ahead, we aim to integrate multi-face detection for group scanning, mask-aware recognition, and cross-location synchronization for distributed teams—all while preserving data privacy and security.
148
- """)
149
-
150
- # Gesture recognition Tab
151
  with app_tab:
152
- # Read image from Camera
153
  enable = st.checkbox("Enable camera")
154
  picture = st.camera_input("Take a picture", disabled=not enable)
 
155
  if picture is not None:
156
-
157
- with st.spinner("Wait for it...", show_time=True):
158
- # Run the predictions
159
- prediction = prod_function(app, image_paths, picture)
160
- #prediction = torch.cat(prediction, 0).to(device)
161
- match_idx = torch.argmax(prediction)
162
- st.write(prediction)
163
- st.write(image_paths)
164
-
165
- # Display the results
166
- if prediction[match_idx] >= 0.6:
167
- pname = image_paths[match_idx].split('/')[-1].split('.')[0]
168
- st.write('Welcome: ',pname)
169
-
170
- ###### upload the data to Glitch https://aimljan25f.glitch.me/adds
171
- # # using post method
172
- url = "https://aimljan25f.glitch.me/adds"
173
-
174
- data = {'rno': '15','sname': pname, 'sclass': '7' }
175
- # response = requests.post(url +url1 , data=data)
176
-
177
- # Post Method is invoked if data != None
178
- req = request.Request(url , method="POST", data=data)
179
-
180
- # Response
181
- resp = request.urlopen(req)
182
- if response.status_code == 200:
183
- st.success("Data updated on: " + "https://aimljan25f.glitch.me/")
184
- else:
185
- st.warning("Data not updated")
186
- ########## end update website
187
 
188
- #######################
 
189
  else:
190
- st.write("Match not found")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import cv2
3
+ import torch
4
+ import numpy as np
5
  import streamlit as st
6
+ import requests
7
+
8
+ from PIL import Image
9
  from glob import glob
10
+ from insightface.app import FaceAnalysis
 
 
 
 
11
  import torch.nn.functional as F
12
 
13
+ # Set the device
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
 
16
+ # Global Variables
17
+ IMAGE_SHAPE = 640
 
 
 
18
  data_path = 'employees'
 
19
  webcam_path = 'captured_image.jpg'
20
 
21
+ # Set Streamlit title
 
 
22
  st.title("AIML-Student Attendance System")
23
+
24
+ # Load employee image paths
25
+ image_paths = glob(os.path.join(data_path, '*.jpg'))
26
+
27
+ # Initialize Face Analysis
28
+ app = FaceAnalysis(name="buffalo_l") # ArcFace model
29
+ app.prepare(ctx_id=0 if torch.cuda.is_available() else -1, det_size=(IMAGE_SHAPE, IMAGE_SHAPE))
30
+
31
+ # Define function to match face embeddings
32
+ def prod_function(app, prod_path, webcam_img_pil):
33
+ np_webcam = np.array(webcam_img_pil)
34
+ cv2_webcam = cv2.cvtColor(np_webcam, cv2.COLOR_RGB2BGR)
 
 
 
 
 
 
35
 
36
+ webcam_faces = app.get(cv2_webcam, max_num=1)
37
+ if not webcam_faces:
38
+ return None, None
39
 
40
+ webcam_emb = torch.tensor(webcam_faces[0].embedding, dtype=torch.float32)
41
+
42
+ similarity_scores = []
43
  for path in prod_path:
44
  img = cv2.imread(path)
45
+ faces = app.get(img, max_num=1)
46
+ if not faces:
47
+ similarity_scores.append(torch.tensor(-1.0))
48
+ continue
49
+
50
+ face_emb = torch.tensor(faces[0].embedding, dtype=torch.float32)
51
+ score = F.cosine_similarity(face_emb, webcam_emb, dim=0)
52
+ similarity_scores.append(score)
 
53
 
54
+ similarity_scores = torch.stack(similarity_scores)
55
+ return similarity_scores, torch.argmax(similarity_scores)
56
+
57
+ # Streamlit tabs
58
  about_tab, app_tab = st.tabs(["About the app", "Face Recognition"])
59
+
60
  with about_tab:
61
+ st.markdown("""
62
+ # 👁️‍🗨️ AI-Powered Face Recognition Attendance System
63
+ Secure and Accurate Attendance using Vision Transformer + ArcFace Embeddings.
64
+
65
+ - **Automated, contactless attendance logging**
66
+ - **Uses InsightFace ArcFace embeddings for recognition**
67
+ - **Real-time logging with confidence scoring**
68
+ - **Future Scope: Mask-aware recognition, Group detection, and more**
69
+ """)
70
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  with app_tab:
 
72
  enable = st.checkbox("Enable camera")
73
  picture = st.camera_input("Take a picture", disabled=not enable)
74
+
75
  if picture is not None:
76
+ with st.spinner("Analyzing face..."):
77
+ image_pil = Image.open(picture)
78
+ prediction_scores, match_idx = prod_function(app, image_paths, image_pil)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ if prediction_scores is None:
81
+ st.warning("No face detected in the captured image.")
82
  else:
83
+ st.write("Similarity Scores:", prediction_scores)
84
+ matched_score = prediction_scores[match_idx].item()
85
+
86
+ if matched_score >= 0.6:
87
+ matched_name = os.path.basename(image_paths[match_idx]).split('.')[0]
88
+ st.success(f"✅ Welcome: {matched_name}")
89
+
90
+ # Send attendance via POST
91
+ url = "https://aimljan25f.glitch.me/adds"
92
+ data = {'rno': '15', 'sname': matched_name, 'sclass': '7'}
93
+ try:
94
+ response = requests.post(url, data=data)
95
+ if response.status_code == 200:
96
+ st.success("Attendance marked successfully.")
97
+ else:
98
+ st.warning("Failed to update attendance.")
99
+ except Exception as e:
100
+ st.error(f"Request failed: {e}")
101
+ else:
102
+ st.error("❌ Match not found. Try again.")