Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,870 Bytes
4375b7f 4e683ec 76a154f 7e59d5e 76a154f b1c12fa 76a154f c201b35 e5eef56 a92dd39 501c87a bc679cd 501c87a a68ab17 501c87a bc679cd 501c87a a92dd39 406f79b a92dd39 406f79b 21ddc42 501c87a 3b16adf 501c87a 76bf9d2 4e683ec a92dd39 76a154f 4e683ec dd2ac3b 76a154f 4e683ec 98df5b4 76a154f 4e683ec 2f39e6b cd9b772 76a154f 76bf9d2 b1c12fa 76a154f 4e683ec 76a154f 4e683ec 406f79b a92dd39 d9f674b a92dd39 f1ac54e a92dd39 438a481 406f79b 438a481 a92dd39 8a9f83e 6111f2c ed9bdc3 4e683ec 6111f2c 4e683ec ed9bdc3 4e683ec ed9bdc3 4e683ec cb73e1e 21ddc42 501c87a 76a154f 76bf9d2 4e683ec a400f4b 4e683ec 76a154f 4e683ec 4ee1547 76a154f 4ee1547 4e683ec 76a154f 4e683ec 76a154f 4e683ec 76bf9d2 4e683ec 7a75c62 1360bf2 7a75c62 4e683ec 76a154f 4e683ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
from threading import Thread
from typing import Iterator
import json
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, AutoModel
from pathlib import Path
from pinecone.grpc import PineconeGRPC as Pinecone
import torch
from huggingface_hub import CommitScheduler
HF_UPLOAD = os.environ.get("HF_UPLOAD")
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
scheduler = CommitScheduler(
repo_id="psyche/llama3-mrc-chat-log",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data",
token=HF_UPLOAD
)
pc = Pinecone(api_key=os.environ.get("PINECONE"))
index = pc.Index("commonsense")
"""
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
retriever_tokenizer = AutoTokenizer.from_pretrained("psyche/dpr-longformer-ko-4096")
retriever = AutoModel.from_pretrained("psyche/dpr-longformer-ko-4096")
retriever.eval()
retriever.to(device)
"""
def save_json(question: str, answer: str) -> None:
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump({"question": question, "answer": answer, "datetime": datetime.now().isoformat(), "label":""}, f, ensure_ascii=False)
f.write("\n")
MAX_MAX_NEW_TOKENS = 8192
DEFAULT_MAX_NEW_TOKENS = 4096
MAX_INPUT_TOKEN_LENGTH = 2048
DESCRIPTION = """\
# Llama-3 8B Korean QA Chatbot \
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "psyche/llama3-8b-instruct-ko"
#model_id = "psyche/meta-llama3-experiments"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True, revision="v4.3")
tokenizer = AutoTokenizer.from_pretrained(model_id, revision="v4.3")
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
"""
retriever_inputs = retriever_tokenizer([message], max_length=1024, truncation=True, return_tensors="pt")
retriever_inputs = {k:v.to(retriever.device) for k,v in retriever_inputs.items()}
with torch.no_grad():
embeddings = retriever(**retriever_inputs).pooler_output
embeddings = embeddings.cpu().numpy()
results = index.query(
vector=embeddings[0],
top_k=1,
include_values=False,
include_metadata=True
)
results = [result for result in results["matches"] if result["score"] > 0.6]
if len(results) > 0:
message = results[0]["metadata"]["text"] + f"\n\nμ λ¬Έλ§₯μ μ°Έκ³ νμ¬ μ§λ¬Έ '{message}'μ λ΅νλ©΄?"
"""
conversation.append({"role": "user", "content": message })
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
save_json(message, "".join(outputs))
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.01,
maximum=4.0,
step=0.1,
value=0.01,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.15,
),
],
stop_btn=None,
examples=[
["μλ
?"],
["λκ° ν μ μλκ² λμΌ?"],
["νμ΄μ¬μ λν΄μ μλ €μ€"],
["λνλ―Όκ΅μ μλλ?"],
["λ
λλ μ΄λλλΌ λ
μ΄μΌ?"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|