Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import cv2 | |
import torch | |
# import spaces | |
from PIL import Image | |
from src.plot_utils import show_masks | |
from gradio_image_annotation import image_annotator | |
from sam2.build_sam import build_sam2 | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
choice_mapping = { | |
"tiny": ["sam2_hiera_t.yaml", "assets/checkpoints/sam2_hiera_tiny.pt"], | |
"small": ["sam2_hiera_s.yaml", "assets/checkpoints/sam2_hiera_small.pt"], | |
"base_plus": ["sam2_hiera_b+.yaml", "assets/checkpoints/sam2_hiera_base_plus.pt"], | |
"large": ["sam2_hiera_l.yaml", "assets/checkpoints/sam2_hiera_large.pt"], | |
} | |
# @spaces.GPU | |
def predict(model_choice: str, annotations, image): | |
config_file, ckpt_path = choice_mapping[str(model_choice)] | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
sam2_model = build_sam2(config_file, ckpt_path, device=device) | |
predictor = SAM2ImagePredictor(sam2_model) | |
predictor.set_image(image) | |
coordinates = np.array( | |
[ | |
int(annotations["boxes"][0]["xmin"]), | |
int(annotations["boxes"][0]["ymin"]), | |
int(annotations["boxes"][0]["xmax"]), | |
int(annotations["boxes"][0]["ymax"]), | |
] | |
) | |
masks, scores, _ = predictor.predict( | |
point_coords=None, | |
point_labels=None, | |
box=coordinates[None, :], | |
multimask_output=False, | |
) | |
mask = masks.transpose(1, 2, 0) | |
mask_image = (mask * 255).astype(np.uint8) # Convert to uint8 format | |
cv2.imwrite("mask.png", mask_image) | |
return [ | |
show_masks(image, masks, scores, box_coords=coordinates), | |
gr.DownloadButton("Download Mask", value="mask.png", visible=True), | |
] | |
with gr.Blocks(delete_cache=(30, 30)) as demo: | |
gr.Markdown( | |
""" | |
# 1. Choose Model Checkpoint | |
""" | |
) | |
with gr.Row(): | |
model = gr.Dropdown( | |
choices=["tiny", "small", "base_plus", "large"], | |
value="tiny", | |
label="Model Checkpoint", | |
info="Which model checkpoint to load?", | |
) | |
gr.Markdown( | |
""" | |
# 2. Upload an Image | |
""" | |
) | |
with gr.Row(): | |
img = gr.Image(value="./assets/img.png", type="numpy", label="Input Image") | |
gr.Markdown( | |
""" | |
# 3. Draw Bounding Box | |
""" | |
) | |
annotator = image_annotator( | |
value={"image": img.value["path"]}, | |
disable_edit_boxes=True, | |
single_box=True, | |
label="Draw a bounding box", | |
) | |
btn = gr.Button("Get Segmentation Mask") | |
download_btn = gr.DownloadButton("Download Mask", value="mask.png", visible=False) | |
btn.click( | |
fn=predict, inputs=[model, annotator, img], outputs=[gr.Plot(), download_btn] | |
) | |
demo.launch() | |