proKBD's picture
Update app.py
487981d verified
"""Streamlit frontend for the News Summarization application."""
import streamlit as st
import pandas as pd
import json
import os
import plotly.express as px
import altair as alt
from utils import (
analyze_company_data,
TextToSpeechConverter,
get_translator,
NewsExtractor,
SentimentAnalyzer,
TextSummarizer
)
# Set page config
st.set_page_config(
page_title="News Summarization App",
page_icon="📰",
layout="wide"
)
# Show loading message
with st.spinner("Initializing the application... Please wait while we load the models."):
# Initialize components
try:
st.success("Application initialized successfully!")
except Exception as e:
st.error(f"Error initializing application: {str(e)}")
st.info("Please try refreshing the page.")
def process_company(company_name):
"""Process company data directly."""
try:
# Call the analysis function directly from utils
data = analyze_company_data(company_name)
# Generate Hindi audio from final analysis
if data.get("final_sentiment_analysis"):
# Get the translator
translator = get_translator()
if translator:
try:
# Create a more detailed Hindi explanation
sentiment_explanation = f"""
{company_name} के समाचारों का विश्लेषण:
समग्र भावना: {data['final_sentiment_analysis']}
भावनात्मक विश्लेषण:
- सकारात्मक भावना: {data.get('comparative_sentiment_score', {}).get('sentiment_indices', {}).get('positivity_index', 0):.2f}
- नकारात्मक भावना: {data.get('comparative_sentiment_score', {}).get('sentiment_indices', {}).get('negativity_index', 0):.2f}
- भावनात्मक तीव्रता: {data.get('comparative_sentiment_score', {}).get('sentiment_indices', {}).get('emotional_intensity', 0):.2f}
विश्वसनीयता स्कोर: {data.get('comparative_sentiment_score', {}).get('sentiment_indices', {}).get('confidence_score', 0):.2f}
"""
# Generate Hindi audio
tts_converter = TextToSpeechConverter()
audio_path = tts_converter.generate_audio(
sentiment_explanation,
f'{company_name}_summary'
)
data['audio_path'] = audio_path
except Exception as e:
print(f"Error generating Hindi audio: {str(e)}")
data['audio_path'] = None
else:
print("Translator not available")
data['audio_path'] = None
return data
except Exception as e:
st.error(f"Error processing company: {str(e)}")
return {"articles": [], "comparative_sentiment_score": {}, "final_sentiment_analysis": "", "audio_path": None}
def main():
st.title("📰 News Summarization and Analysis")
# Sidebar
st.sidebar.header("Settings")
# Replace dropdown with text input
company = st.sidebar.text_input(
"Enter Company Name",
placeholder="e.g., Tesla, Apple, Microsoft, or any other company",
help="Enter the name of any company you want to analyze"
)
if st.sidebar.button("Analyze") and company:
if len(company.strip()) < 2:
st.sidebar.error("Please enter a valid company name (at least 2 characters)")
else:
with st.spinner("Analyzing news articles..."):
try:
# Process company data
data = process_company(company)
if not data["articles"]:
st.error("No articles found for analysis.")
return
# Display Articles
st.header("📑 News Articles")
for idx, article in enumerate(data["articles"], 1):
with st.expander(f"Article {idx}: {article['title']}"):
# Display content with proper formatting
if article.get("content"):
st.markdown("**Content:**")
st.write(article["content"])
else:
st.warning("No content available for this article")
# Display summary if available
if article.get("summary"):
st.markdown("**Summary:**")
st.write(article["summary"])
# Display source
if article.get("source"):
st.markdown("**Source:**")
st.write(article["source"])
# Enhanced sentiment display
if "sentiment" in article:
sentiment_col1, sentiment_col2 = st.columns(2)
with sentiment_col1:
st.markdown("**Basic Sentiment:**")
st.write(article["sentiment"])
if "sentiment_score" in article:
st.write(f"**Confidence Score:** {article['sentiment_score']*100:.1f}%")
with sentiment_col2:
# Display fine-grained sentiment if available
if "fine_grained_sentiment" in article and article["fine_grained_sentiment"]:
st.markdown("**Detailed Sentiment:**")
fine_grained = article["fine_grained_sentiment"]
if "category" in fine_grained:
st.write(f"Category: {fine_grained['category']}")
if "confidence" in fine_grained:
st.write(f"Confidence: {fine_grained['confidence']*100:.1f}%")
# Display sentiment indices if available
if "sentiment_indices" in article and article["sentiment_indices"]:
st.markdown("**Sentiment Indices:**")
indices = article["sentiment_indices"]
# Create columns for displaying indices
idx_cols = st.columns(3)
# Display positivity and negativity in first column
with idx_cols[0]:
if "positivity_index" in indices:
st.markdown(f"**Positivity:** {indices['positivity_index']:.2f}")
if "negativity_index" in indices:
st.markdown(f"**Negativity:** {indices['negativity_index']:.2f}")
# Display emotional intensity and controversy in second column
with idx_cols[1]:
if "emotional_intensity" in indices:
st.markdown(f"**Emotional Intensity:** {indices['emotional_intensity']:.2f}")
if "controversy_score" in indices:
st.markdown(f"**Controversy:** {indices['controversy_score']:.2f}")
# Display confidence and ESG in third column
with idx_cols[2]:
if "confidence_score" in indices:
st.markdown(f"**Confidence:** {indices['confidence_score']:.2f}")
if "esg_relevance" in indices:
st.markdown(f"**ESG Relevance:** {indices['esg_relevance']:.2f}")
# Display entities if available
if "entities" in article and article["entities"]:
st.markdown("**Named Entities:**")
entities = article["entities"]
# Organizations
if "ORG" in entities and entities["ORG"]:
st.write("**Organizations:**", ", ".join(entities["ORG"]))
# People
if "PERSON" in entities and entities["PERSON"]:
st.write("**People:**", ", ".join(entities["PERSON"]))
# Locations
if "GPE" in entities and entities["GPE"]:
st.write("**Locations:**", ", ".join(entities["GPE"]))
# Money
if "MONEY" in entities and entities["MONEY"]:
st.write("**Financial Values:**", ", ".join(entities["MONEY"]))
# Display sentiment targets if available
if "sentiment_targets" in article and article["sentiment_targets"]:
st.markdown("**Sentiment Targets:**")
targets = article["sentiment_targets"]
for target in targets:
st.markdown(f"**{target['entity']}** ({target['type']}): {target['sentiment']} ({target['confidence']*100:.1f}%)")
st.markdown(f"> {target['context']}")
st.markdown("---")
# Display URL if available
if "url" in article:
st.markdown(f"**[Read More]({article['url']})**")
# Display Comparative Analysis
st.header("📊 Comparative Analysis")
analysis = data.get("comparative_sentiment_score", {})
# Sentiment Distribution
if "sentiment_distribution" in analysis:
st.subheader("Sentiment Distribution")
sentiment_dist = analysis["sentiment_distribution"]
try:
# Extract basic sentiment data
if isinstance(sentiment_dist, dict):
if "basic" in sentiment_dist and isinstance(sentiment_dist["basic"], dict):
basic_dist = sentiment_dist["basic"]
elif any(k in sentiment_dist for k in ['positive', 'negative', 'neutral']):
basic_dist = {k: v for k, v in sentiment_dist.items()
if k in ['positive', 'negative', 'neutral']}
else:
basic_dist = {'positive': 0, 'negative': 0, 'neutral': 1}
else:
basic_dist = {'positive': 0, 'negative': 0, 'neutral': 1}
# Calculate percentages
total_articles = sum(basic_dist.values())
if total_articles > 0:
percentages = {
k: (v / total_articles) * 100
for k, v in basic_dist.items()
}
else:
percentages = {k: 0 for k in basic_dist}
# Display as metrics
st.write("**Sentiment Distribution:**")
col1, col2, col3 = st.columns(3)
with col1:
st.metric(
"Positive",
basic_dist.get('positive', 0),
f"{percentages.get('positive', 0):.1f}%"
)
with col2:
st.metric(
"Negative",
basic_dist.get('negative', 0),
f"{percentages.get('negative', 0):.1f}%"
)
with col3:
st.metric(
"Neutral",
basic_dist.get('neutral', 0),
f"{percentages.get('neutral', 0):.1f}%"
)
# Create visualization
chart_data = pd.DataFrame({
'Sentiment': ['Positive', 'Negative', 'Neutral'],
'Count': [
basic_dist.get('positive', 0),
basic_dist.get('negative', 0),
basic_dist.get('neutral', 0)
],
'Percentage': [
f"{percentages.get('positive', 0):.1f}%",
f"{percentages.get('negative', 0):.1f}%",
f"{percentages.get('neutral', 0):.1f}%"
]
})
chart = alt.Chart(chart_data).mark_bar().encode(
y='Sentiment',
x='Count',
color=alt.Color('Sentiment', scale=alt.Scale(
domain=['Positive', 'Negative', 'Neutral'],
range=['green', 'red', 'gray']
)),
tooltip=['Sentiment', 'Count', 'Percentage']
).properties(
width=600,
height=300
)
text = chart.mark_text(
align='left',
baseline='middle',
dx=3
).encode(
text='Percentage'
)
chart_with_text = (chart + text)
st.altair_chart(chart_with_text, use_container_width=True)
except Exception as e:
st.error(f"Error creating visualization: {str(e)}")
# Display sentiment indices if available
if "sentiment_indices" in analysis and analysis["sentiment_indices"]:
st.subheader("Sentiment Indices")
indices = analysis["sentiment_indices"]
try:
if isinstance(indices, dict):
# Display as metrics in columns
cols = st.columns(3)
display_names = {
"positivity_index": "Positivity",
"negativity_index": "Negativity",
"emotional_intensity": "Emotional Intensity",
"controversy_score": "Controversy",
"confidence_score": "Confidence",
"esg_relevance": "ESG Relevance"
}
for i, (key, value) in enumerate(indices.items()):
if isinstance(value, (int, float)):
with cols[i % 3]:
display_name = display_names.get(key, key.replace("_", " ").title())
st.metric(display_name, f"{value:.2f}")
# Create visualization
chart_data = pd.DataFrame({
'Index': [display_names.get(k, k.replace("_", " ").title()) for k in indices.keys()],
'Value': [v if isinstance(v, (int, float)) else 0 for v in indices.values()]
})
chart = alt.Chart(chart_data).mark_bar().encode(
x='Value',
y='Index',
color=alt.Color('Index')
).properties(
width=600,
height=300
)
st.altair_chart(chart, use_container_width=True)
# Add descriptions
with st.expander("Sentiment Indices Explained"):
st.markdown("""
- **Positivity**: Measures the positive sentiment in the articles (0-1)
- **Negativity**: Measures the negative sentiment in the articles (0-1)
- **Emotional Intensity**: Measures the overall emotional content (0-1)
- **Controversy**: High when both positive and negative sentiments are strong (0-1)
- **Confidence**: Confidence in the sentiment analysis (0-1)
- **ESG Relevance**: Relevance to Environmental, Social, and Governance topics (0-1)
""")
except Exception as e:
st.error(f"Error creating indices visualization: {str(e)}")
# Display Final Analysis
st.header("📊 Final Analysis")
# Display overall sentiment analysis with enhanced formatting
if data.get("final_sentiment_analysis"):
st.markdown("### Overall Sentiment Analysis")
analysis_parts = data["final_sentiment_analysis"].split(". ")
if len(analysis_parts) >= 2:
# First sentence - Overall sentiment
st.markdown(f"**{analysis_parts[0]}.**")
# Second sentence - Key findings
st.markdown(f"**{analysis_parts[1]}.**")
# Third sentence - Additional insights (if available)
if len(analysis_parts) > 2:
st.markdown(f"**{analysis_parts[2]}.**")
else:
st.write(data["final_sentiment_analysis"])
# Add sentiment strength indicator
if data.get("ensemble_info"):
ensemble_info = data["ensemble_info"]
if "model_agreement" in ensemble_info:
agreement = ensemble_info["model_agreement"]
strength = "Strong" if agreement > 0.8 else "Moderate" if agreement > 0.6 else "Weak"
st.markdown(f"**Sentiment Strength:** {strength} (Agreement: {agreement:.2f})")
# Display ensemble model details
if data.get("ensemble_info"):
st.subheader("Ensemble Model Details")
ensemble_info = data["ensemble_info"]
# Create columns for model details
model_cols = st.columns(3)
with model_cols[0]:
st.markdown("**Primary Model:**")
if "models" in ensemble_info and "transformer" in ensemble_info["models"]:
model = ensemble_info["models"]["transformer"]
st.write(f"Sentiment: {model['sentiment']}")
st.write(f"Score: {model['score']:.3f}")
with model_cols[1]:
st.markdown("**TextBlob Analysis:**")
if "models" in ensemble_info and "textblob" in ensemble_info["models"]:
model = ensemble_info["models"]["textblob"]
st.write(f"Sentiment: {model['sentiment']}")
st.write(f"Score: {model['score']:.3f}")
with model_cols[2]:
st.markdown("**VADER Analysis:**")
if "models" in ensemble_info and "vader" in ensemble_info["models"]:
model = ensemble_info["models"]["vader"]
st.write(f"Sentiment: {model['sentiment']}")
st.write(f"Score: {model['score']:.3f}")
# Display ensemble agreement if available
if "model_agreement" in ensemble_info:
st.markdown(f"**Model Agreement:** {ensemble_info['model_agreement']:.3f}")
# Display Hindi audio player
st.subheader("🔊 Listen to Analysis (Hindi)")
if data.get("audio_path") and os.path.exists(data["audio_path"]):
st.audio(data["audio_path"])
else:
st.info("Generating Hindi audio summary...")
with st.spinner("Please wait while we generate the Hindi audio summary..."):
# Try to generate audio again
translator = get_translator()
if translator and data.get("final_sentiment_analysis"):
try:
# Translate final analysis to Hindi
translated_analysis = translator.translate(
data["final_sentiment_analysis"],
dest='hi'
).text
# Generate Hindi audio
tts_converter = TextToSpeechConverter()
audio_path = tts_converter.generate_audio(
translated_analysis,
f'{company}_summary'
)
if audio_path and os.path.exists(audio_path):
st.audio(audio_path)
else:
st.error("Hindi audio summary not available")
except Exception as e:
st.error(f"Error generating Hindi audio: {str(e)}")
else:
st.error("Hindi audio summary not available")
# Total Articles
if "total_articles" in analysis:
st.sidebar.info(f"Found {analysis['total_articles']} articles")
except Exception as e:
st.error(f"Error analyzing company data: {str(e)}")
print(f"Error: {str(e)}")
# Add a disclaimer
st.sidebar.markdown("---")
st.sidebar.markdown("### About")
st.sidebar.write("This app analyzes news articles and provides sentiment analysis for any company.")
if __name__ == "__main__":
main()