File size: 74,216 Bytes
d9cc29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4206c9
d9cc29f
 
821b188
 
 
 
 
 
 
03d5192
821b188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb6902
821b188
 
 
3cb6902
 
03d5192
 
3cb6902
03d5192
 
 
 
 
 
 
 
 
 
3cb6902
 
 
 
821b188
 
 
 
 
 
 
 
 
 
 
ada2f0f
 
 
 
 
 
03d5192
 
 
 
 
821b188
03d5192
 
 
 
 
 
 
 
821b188
03d5192
821b188
 
 
03d5192
 
821b188
 
 
 
 
 
 
 
 
c4206c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9cc29f
 
 
9652678
 
d9cc29f
 
 
9652678
d9cc29f
 
9652678
d9cc29f
9652678
 
 
 
 
 
d9cc29f
 
 
 
 
 
 
9652678
 
 
 
d9cc29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9652678
d9cc29f
 
 
 
 
 
 
9652678
d9cc29f
 
 
9652678
d9cc29f
9652678
 
 
 
d9cc29f
 
 
 
 
 
 
9652678
d9cc29f
 
 
9652678
d9cc29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daf8f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9cc29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebbbd4
 
 
 
d9cc29f
 
 
 
 
eebbbd4
 
 
 
 
d9cc29f
 
eebbbd4
 
d9cc29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285f8a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebbbd4
 
 
 
285f8a6
 
 
 
 
eebbbd4
 
 
 
 
285f8a6
 
eebbbd4
 
285f8a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9cc29f
 
 
c4206c9
d9cc29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
"""Utility functions for news extraction, sentiment analysis, and text-to-speech."""

import requests
from bs4 import BeautifulSoup
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from gtts import gTTS
import os
from typing import List, Dict, Any
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from config import *
import re
from datetime import datetime, timedelta
import time
import json
from googletrans import Translator, LANGUAGES
import statistics

def analyze_company_data(company_name: str) -> Dict[str, Any]:
    """Analyze company news and generate insights."""
    try:
        # Initialize components
        news_extractor = NewsExtractor()
        sentiment_analyzer = SentimentAnalyzer()
        text_summarizer = TextSummarizer()
        comparative_analyzer = ComparativeAnalyzer()
        
        # Get news articles
        articles = news_extractor.search_news(company_name)
        
        if not articles:
            return {
                "articles": [],
                "comparative_sentiment_score": {},
                "final_sentiment_analysis": "No articles found for analysis.",
                "audio_path": None
            }
        
        # Process each article
        processed_articles = []
        sentiment_scores = {}
        
        for article in articles:
            # Generate summary
            summary = text_summarizer.summarize(article['content'])
            article['summary'] = summary
            
            # Analyze overall sentiment
            sentiment = sentiment_analyzer.analyze(article['content'])
            article['sentiment'] = sentiment
            
            # Analyze fine-grained sentiment
            try:
                fine_grained_results = sentiment_analyzer._get_fine_grained_sentiment(article['content'])
                article['fine_grained_sentiment'] = fine_grained_results
                
                # Add sentiment indices
                sentiment_indices = sentiment_analyzer._calculate_sentiment_indices(fine_grained_results)
                article['sentiment_indices'] = sentiment_indices
                
                # Add entities and sentiment targets
                entities = sentiment_analyzer._extract_entities(article['content'])
                article['entities'] = entities
                
                sentiment_targets = sentiment_analyzer._extract_sentiment_targets(article['content'], entities)
                article['sentiment_targets'] = sentiment_targets
                
            except Exception as e:
                print(f"Error in fine-grained sentiment analysis: {str(e)}")
            
            # Track sentiment by source
            source = article['source']
            if source not in sentiment_scores:
                sentiment_scores[source] = []
            sentiment_scores[source].append(sentiment)
            
            processed_articles.append(article)
        
        # Calculate overall sentiment
        overall_sentiment = sentiment_analyzer.get_overall_sentiment(processed_articles)
        
        # Ensure consistent array lengths in sentiment_scores
        max_length = max(len(scores) for scores in sentiment_scores.values())
        for source in sentiment_scores:
            # Pad shorter arrays with 'neutral' to match the longest array
            sentiment_scores[source].extend(['neutral'] * (max_length - len(sentiment_scores[source])))
        
        # Get comparative analysis
        comparative_analysis = comparative_analyzer.analyze_coverage(processed_articles, company_name)
        
        # Combine all results
        result = {
            "articles": processed_articles,
            "comparative_sentiment_score": {
                "sentiment_distribution": comparative_analysis.get("sentiment_distribution", {}),
                "sentiment_indices": comparative_analysis.get("sentiment_indices", {}),
                "source_distribution": comparative_analysis.get("source_distribution", {}),
                "common_topics": comparative_analysis.get("common_topics", []),
                "coverage_differences": comparative_analysis.get("coverage_differences", []),
                "total_articles": len(processed_articles)
            },
            "final_sentiment_analysis": overall_sentiment,
            "ensemble_info": sentiment_analyzer._get_ensemble_sentiment("\n".join([a['content'] for a in processed_articles])),
            "audio_path": None
        }
        
        return result
        
    except Exception as e:
        print(f"Error analyzing company data: {str(e)}")
        return {
            "articles": [],
            "comparative_sentiment_score": {},
            "final_sentiment_analysis": f"Error during analysis: {str(e)}",
            "audio_path": None
        }

# Initialize translator with retry mechanism
def get_translator():
    max_retries = 3
    for attempt in range(max_retries):
        try:
            translator = Translator()
            # Test the translator
            translator.translate('test', dest='en')
            return translator
        except Exception as e:
            if attempt == max_retries - 1:
                print(f"Failed to initialize translator after {max_retries} attempts: {str(e)}")
                return None
            time.sleep(1)  # Wait before retrying
    return None

class NewsExtractor:
    def __init__(self):
        self.headers = HEADERS
        self.start_time = None
        self.timeout = 30  # 30 seconds timeout

    def search_news(self, company_name: str) -> List[Dict[str, str]]:
        """Extract news articles about the company ensuring minimum count."""
        self.start_time = time.time()
        all_articles = []
        retries = 2  # Number of retries if we don't get enough articles
        min_articles = MIN_ARTICLES  # Start with default minimum
        
        while retries > 0 and len(all_articles) < min_articles:
            # Check for timeout
            if time.time() - self.start_time > self.timeout:
                print(f"\nTimeout reached after {self.timeout} seconds. Proceeding with available articles.")
                break
                
            for source, url_template in NEWS_SOURCES.items():
                try:
                    url = url_template.format(company_name.replace(" ", "+"))
                    print(f"\nSearching {source} for news about {company_name}...")
                    
                    # Try different page numbers for more articles
                    for page in range(2):  # Try first two pages
                        # Check for timeout again
                        if time.time() - self.start_time > self.timeout:
                            break
                            
                        page_url = url
                        if page > 0:
                            if source == "google":
                                page_url += f"&start={page * 10}"
                            elif source == "bing":
                                page_url += f"&first={page * 10 + 1}"
                            elif source == "yahoo":
                                page_url += f"&b={page * 10 + 1}"
                            elif source == "reuters":
                                page_url += f"&page={page + 1}"
                            elif source == "marketwatch":
                                page_url += f"&page={page + 1}"
                            elif source == "investing":
                                page_url += f"&page={page + 1}"
                            elif source == "techcrunch":
                                page_url += f"/page/{page + 1}"
                            elif source == "zdnet":
                                page_url += f"&page={page + 1}"
                        
                        response = requests.get(page_url, headers=self.headers, timeout=15)
                        if response.status_code != 200:
                            print(f"Error: {source} page {page+1} returned status code {response.status_code}")
                            continue
                            
                        soup = BeautifulSoup(response.content, 'html.parser')
                        
                        source_articles = []
                        if source == "google":
                            source_articles = self._parse_google_news(soup)
                        elif source == "bing":
                            source_articles = self._parse_bing_news(soup)
                        elif source == "yahoo":
                            source_articles = self._parse_yahoo_news(soup)
                        elif source == "reuters":
                            source_articles = self._parse_reuters_news(soup)
                        elif source == "marketwatch":
                            source_articles = self._parse_marketwatch_news(soup)
                        elif source == "investing":
                            source_articles = self._parse_investing_news(soup)
                        elif source == "techcrunch":
                            source_articles = self._parse_techcrunch_news(soup)
                        elif source == "zdnet":
                            source_articles = self._parse_zdnet_news(soup)
                        
                        # Limit articles per source
                        if source_articles:
                            source_articles = source_articles[:MAX_ARTICLES_PER_SOURCE]
                            all_articles.extend(source_articles)
                            print(f"Found {len(source_articles)} articles from {source} page {page+1}")
                        
                        # If we have enough articles, break the page loop
                        if len(all_articles) >= min_articles:
                            break
                            
                except Exception as e:
                    print(f"Error fetching from {source}: {str(e)}")
                    continue
                
                # If we have enough articles, break the source loop
                if len(all_articles) >= min_articles:
                    break
            
            retries -= 1
            if len(all_articles) < min_articles and retries > 0:
                print(f"\nFound only {len(all_articles)} articles, retrying...")
                # Lower the minimum requirement if we're close
                if len(all_articles) >= 15:  # If we have at least 15 articles
                    min_articles = len(all_articles)
                    print(f"Adjusting minimum requirement to {min_articles} articles")
        
        # Remove duplicates
        unique_articles = self._remove_duplicates(all_articles)
        print(f"\nFound {len(unique_articles)} unique articles")
        
        if len(unique_articles) < MIN_ARTICLES:
            print(f"Warning: Could only find {len(unique_articles)} unique articles, fewer than minimum {MIN_ARTICLES}")
            print("Proceeding with available articles...")
        
        # Balance articles across sources
        balanced_articles = self._balance_sources(unique_articles)
        return balanced_articles[:max(len(unique_articles), MAX_ARTICLES)]

    def _balance_sources(self, articles: List[Dict[str, str]]) -> List[Dict[str, str]]:
        """Balance articles across sources while maintaining minimum count."""
        source_articles = {}
        
        # Group articles by source
        for article in articles:
            source = article['source']
            if source not in source_articles:
                source_articles[source] = []
            source_articles[source].append(article)
        
        # Calculate target articles per source
        total_sources = len(source_articles)
        target_per_source = max(MIN_ARTICLES // total_sources, 
                              MAX_ARTICLES_PER_SOURCE)
        
        # Get articles from each source
        balanced = []
        for source, articles_list in source_articles.items():
            balanced.extend(articles_list[:target_per_source])
        
        # If we still need more articles to meet minimum, add more from sources
        # that have additional articles
        if len(balanced) < MIN_ARTICLES:
            remaining = []
            for articles_list in source_articles.values():
                remaining.extend(articles_list[target_per_source:])
            
            # Sort remaining by source to maintain balance
            remaining.sort(key=lambda x: len([a for a in balanced if a['source'] == x['source']]))
            
            while len(balanced) < MIN_ARTICLES and remaining:
                balanced.append(remaining.pop(0))
        
        return balanced

    def _parse_google_news(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
        """Parse Google News search results."""
        articles = []
        for div in soup.find_all(['div', 'article'], class_=['g', 'xuvV6b', 'WlydOe']):
            try:
                title_elem = div.find(['h3', 'h4'])
                snippet_elem = div.find('div', class_=['VwiC3b', 'yy6M1d'])
                link_elem = div.find('a')
                source_elem = div.find(['div', 'span'], class_='UPmit')
                
                if title_elem and snippet_elem and link_elem:
                    source = source_elem.get_text(strip=True) if source_elem else 'Google News'
                    articles.append({
                        'title': title_elem.get_text(strip=True),
                        'content': snippet_elem.get_text(strip=True),
                        'url': link_elem['href'],
                        'source': source
                    })
            except Exception as e:
                print(f"Error parsing Google article: {str(e)}")
                continue
        return articles

    def _parse_bing_news(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
        """Parse Bing News search results."""
        articles = []
        for article in soup.find_all(['div', 'article'], class_=['news-card', 'newsitem', 'item-info']):
            try:
                title_elem = article.find(['a', 'h3'], class_=['title', 'news-card-title'])
                snippet_elem = article.find(['div', 'p'], class_=['snippet', 'description'])
                source_elem = article.find(['div', 'span'], class_=['source', 'provider'])
                
                if title_elem and snippet_elem:
                    source = source_elem.get_text(strip=True) if source_elem else 'Bing News'
                    url = title_elem['href'] if 'href' in title_elem.attrs else ''
                    articles.append({
                        'title': title_elem.get_text(strip=True),
                        'content': snippet_elem.get_text(strip=True),
                        'url': url,
                        'source': source
                    })
            except Exception as e:
                print(f"Error parsing Bing article: {str(e)}")
        return articles

    def _parse_yahoo_news(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
        """Parse Yahoo News search results."""
        articles = []
        for article in soup.find_all('div', class_='NewsArticle'):
            try:
                title_elem = article.find(['h4', 'h3', 'a'])
                snippet_elem = article.find('p')
                source_elem = article.find(['span', 'div'], class_=['provider', 'source'])
                
                if title_elem and snippet_elem:
                    source = source_elem.get_text(strip=True) if source_elem else 'Yahoo News'
                    url = title_elem.find('a')['href'] if title_elem.find('a') else ''
                    articles.append({
                        'title': title_elem.get_text(strip=True),
                        'content': snippet_elem.get_text(strip=True),
                        'url': url,
                        'source': source
                    })
            except Exception as e:
                print(f"Error parsing Yahoo article: {str(e)}")
        return articles

    def _parse_reuters_news(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
        """Parse Reuters search results."""
        articles = []
        for article in soup.find_all(['div', 'article'], class_=['search-result-content', 'story']):
            try:
                title_elem = article.find(['h3', 'a'], class_='story-title')
                snippet_elem = article.find(['p', 'div'], class_=['story-description', 'description'])
                
                if title_elem:
                    url = title_elem.find('a')['href'] if title_elem.find('a') else ''
                    if url and not url.startswith('http'):
                        url = 'https://www.reuters.com' + url
                    
                    articles.append({
                        'title': title_elem.get_text(strip=True),
                        'content': snippet_elem.get_text(strip=True) if snippet_elem else '',
                        'url': url,
                        'source': 'Reuters'
                    })
            except Exception as e:
                print(f"Error parsing Reuters article: {str(e)}")
        return articles

    def _parse_marketwatch_news(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
        """Parse MarketWatch search results."""
        articles = []
        for article in soup.find_all(['div', 'article'], class_=['element--article', 'article__content']):
            try:
                title_elem = article.find(['h3', 'h2'], class_=['article__headline', 'title'])
                snippet_elem = article.find('p', class_=['article__summary', 'description'])
                
                if title_elem:
                    url = title_elem.find('a')['href'] if title_elem.find('a') else ''
                    articles.append({
                        'title': title_elem.get_text(strip=True),
                        'content': snippet_elem.get_text(strip=True) if snippet_elem else '',
                        'url': url,
                        'source': 'MarketWatch'
                    })
            except Exception as e:
                print(f"Error parsing MarketWatch article: {str(e)}")
        return articles

    def _parse_investing_news(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
        """Parse Investing.com search results."""
        articles = []
        for article in soup.find_all(['div', 'article'], class_=['articleItem', 'news-item']):
            try:
                title_elem = article.find(['a', 'h3'], class_=['title', 'articleTitle'])
                snippet_elem = article.find(['p', 'div'], class_=['description', 'articleContent'])
                
                if title_elem:
                    url = title_elem['href'] if 'href' in title_elem.attrs else title_elem.find('a')['href']
                    if url and not url.startswith('http'):
                        url = 'https://www.investing.com' + url
                        
                    articles.append({
                        'title': title_elem.get_text(strip=True),
                        'content': snippet_elem.get_text(strip=True) if snippet_elem else '',
                        'url': url,
                        'source': 'Investing.com'
                    })
            except Exception as e:
                print(f"Error parsing Investing.com article: {str(e)}")
        return articles

    def _parse_techcrunch_news(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
        """Parse TechCrunch search results."""
        articles = []
        for article in soup.find_all(['div', 'article'], class_=['post-block', 'article-block']):
            try:
                title_elem = article.find(['h2', 'h3', 'a'], class_=['post-block__title', 'article-title'])
                snippet_elem = article.find(['div', 'p'], class_=['post-block__content', 'article-content'])
                
                if title_elem:
                    url = title_elem.find('a')['href'] if title_elem.find('a') else ''
                    articles.append({
                        'title': title_elem.get_text(strip=True),
                        'content': snippet_elem.get_text(strip=True) if snippet_elem else '',
                        'url': url,
                        'source': 'TechCrunch'
                    })
            except Exception as e:
                print(f"Error parsing TechCrunch article: {str(e)}")
        return articles

    def _parse_zdnet_news(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
        """Parse ZDNet search results."""
        articles = []
        for article in soup.find_all(['div', 'article'], class_=['item', 'article']):
            try:
                title_elem = article.find(['h3', 'a'], class_=['title', 'headline'])
                snippet_elem = article.find(['p', 'div'], class_=['summary', 'content'])
                
                if title_elem:
                    url = title_elem.find('a')['href'] if title_elem.find('a') else ''
                    if url and not url.startswith('http'):
                        url = 'https://www.zdnet.com' + url
                        
                    articles.append({
                        'title': title_elem.get_text(strip=True),
                        'content': snippet_elem.get_text(strip=True) if snippet_elem else '',
                        'url': url,
                        'source': 'ZDNet'
                    })
            except Exception as e:
                print(f"Error parsing ZDNet article: {str(e)}")
        return articles

    def _remove_duplicates(self, articles: List[Dict[str, str]]) -> List[Dict[str, str]]:
        """Remove duplicate articles based on title similarity."""
        unique_articles = []
        seen_titles = set()
        
        for article in articles:
            title = article['title'].lower()
            if not any(title in seen_title or seen_title in title for seen_title in seen_titles):
                unique_articles.append(article)
                seen_titles.add(title)
        
        return unique_articles

class SentimentAnalyzer:
    def __init__(self):
        try:
            # Primary financial sentiment model
            self.sentiment_pipeline = pipeline("sentiment-analysis", 
                                      model=SENTIMENT_MODEL)
            
            # Initialize fine-grained sentiment models
            self.fine_grained_models = {}
            try:
                # Initialize the default fine-grained model for backward compatibility
                self.fine_grained_sentiment = pipeline("sentiment-analysis",
                                               model=SENTIMENT_FINE_GRAINED_MODEL)
                
                # Initialize additional fine-grained models
                for model_name, model_path in FINE_GRAINED_MODELS.items():
                    try:
                        print(f"Loading fine-grained model: {model_name}")
                        self.fine_grained_models[model_name] = pipeline("sentiment-analysis", 
                                                                model=model_path)
                    except Exception as e:
                        print(f"Error loading fine-grained model {model_name}: {str(e)}")
            except Exception as e:
                print(f"Error initializing fine-grained models: {str(e)}")
                self.fine_grained_sentiment = None
            
            # Initialize additional sentiment analyzers if available
            self.has_textblob = False
            self.has_vader = False
            
            try:
                from textblob import TextBlob
                self.TextBlob = TextBlob
                self.has_textblob = True
            except:
                print("TextBlob not available. Install with: pip install textblob")
            
            try:
                from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
                self.vader = SentimentIntensityAnalyzer()
                self.has_vader = True
            except:
                print("VADER not available. Install with: pip install vaderSentiment")
            
            self.summarizer = pipeline("summarization", 
                               model=SUMMARIZATION_MODEL)
            self.vectorizer = TfidfVectorizer(stop_words='english', 
                                      max_features=10)
            
            # Initialize NER pipeline if spaCy is available
            try:
                import spacy
                self.nlp = spacy.load("en_core_web_sm")
                self.has_ner = True
            except:
                self.has_ner = False
                print("spaCy not available for NER. Install with: pip install spacy && python -m spacy download en_core_web_sm")
                
        except Exception as e:
            print(f"Error initializing sentiment models: {str(e)}")
            # Fallback to default models if specific models fail
            self.sentiment_pipeline = pipeline("sentiment-analysis")
            self.fine_grained_sentiment = None
            self.fine_grained_models = {}
            self.summarizer = pipeline("summarization")
            self.vectorizer = TfidfVectorizer(stop_words='english', max_features=10)
            self.has_ner = False
            self.has_textblob = False
            self.has_vader = False

    def analyze(self, text: str) -> str:
        """Analyze sentiment of text and return sentiment label."""
        try:
            # Get ensemble sentiment analysis
            sentiment_analysis = self._get_ensemble_sentiment(text)
            return sentiment_analysis['ensemble_sentiment']
        except Exception as e:
            print(f"Error in sentiment analysis: {str(e)}")
            return 'neutral'  # Default to neutral on error

    def get_overall_sentiment(self, articles: List[Dict[str, Any]]) -> str:
        """Get overall sentiment from a list of articles."""
        try:
            # Combine all article texts
            combined_text = ' '.join([
                f"{article.get('title', '')} {article.get('content', '')}"
                for article in articles
            ])
            
            # Get ensemble sentiment analysis
            sentiment_analysis = self._get_ensemble_sentiment(combined_text)
            return sentiment_analysis['ensemble_sentiment']
        except Exception as e:
            print(f"Error getting overall sentiment: {str(e)}")
            return 'neutral'  # Default to neutral on error

    def analyze_article(self, article: Dict[str, str]) -> Dict[str, Any]:
        """Analyze sentiment and generate summary for an article."""
        try:
            # Get the full text by combining title and content
            full_text = f"{article['title']} {article['content']}"
            
            # Generate summary
            summary = self.summarize_text(full_text)
            
            # Get ensemble sentiment analysis
            sentiment_analysis = self._get_ensemble_sentiment(full_text)
            sentiment_label = sentiment_analysis['ensemble_sentiment']
            sentiment_score = sentiment_analysis['ensemble_score']
            
            # Add fine-grained sentiment analysis
            fine_grained_sentiment = self._get_fine_grained_sentiment(full_text)
            
            # Extract key topics
            topics = self.extract_topics(full_text)
            
            # Extract named entities
            entities = self._extract_entities(full_text)
            
            # Extract sentiment targets (entities associated with sentiment)
            sentiment_targets = self._extract_sentiment_targets(full_text, entities)
            
            # Add analysis to article
            analyzed_article = article.copy()
            analyzed_article.update({
                'summary': summary,
                'sentiment': sentiment_label,
                'sentiment_score': sentiment_score,
                'sentiment_details': sentiment_analysis,
                'fine_grained_sentiment': fine_grained_sentiment,
                'topics': topics,
                'entities': entities,
                'sentiment_targets': sentiment_targets,
                'sentiment_indices': fine_grained_sentiment.get('indices', {}),
                'analysis_timestamp': datetime.now().isoformat()
            })
            
            return analyzed_article
            
        except Exception as e:
            print(f"Error analyzing article: {str(e)}")
            # Return original article with default values if analysis fails
            article.update({
                'summary': article.get('content', '')[:200] + '...',
                'sentiment': 'neutral',
                'sentiment_score': 0.0,
                'sentiment_details': {},
                'fine_grained_sentiment': {},
                'topics': [],
                'entities': {},
                'sentiment_targets': [],
                'sentiment_indices': {
                    'positivity_index': 0.5,
                    'negativity_index': 0.5,
                    'emotional_intensity': 0.0,
                    'controversy_score': 0.0,
                    'confidence_score': 0.0,
                    'esg_relevance': 0.0
                },
                'analysis_timestamp': datetime.now().isoformat()
            })
            return article

    def _get_ensemble_sentiment(self, text: str) -> Dict[str, Any]:
        """Get ensemble sentiment by combining multiple sentiment models."""
        results = {}
        
        # Initialize with default values
        ensemble_result = {
            'ensemble_sentiment': 'neutral',
            'ensemble_score': 0.5,
            'models': {}
        }
        
        try:
            # 1. Primary transformer model (finbert)
            try:
                primary_result = self.sentiment_pipeline(text[:512])[0]  # Limit text length
                primary_label = primary_result['label'].lower()
                primary_score = primary_result['score']
                
                # Map to standard format
                if primary_label == 'positive':
                    primary_normalized = primary_score
                elif primary_label == 'negative':
                    primary_normalized = 1 - primary_score
                else:  # neutral
                    primary_normalized = 0.5
                    
                ensemble_result['models']['transformer'] = {
                    'sentiment': primary_label,
                    'score': round(primary_score, 3),
                    'normalized_score': round(primary_normalized, 3)
                }
            except:
                ensemble_result['models']['transformer'] = {
                    'sentiment': 'error',
                    'score': 0,
                    'normalized_score': 0.5
                }
            
            # 2. TextBlob sentiment
            if self.has_textblob:
                try:
                    blob = self.TextBlob(text)
                    polarity = blob.sentiment.polarity
                    
                    # Convert to standard format
                    if polarity > 0.1:
                        textblob_sentiment = 'positive'
                        textblob_score = polarity
                    elif polarity < -0.1:
                        textblob_sentiment = 'negative'
                        textblob_score = abs(polarity)
                    else:
                        textblob_sentiment = 'neutral'
                        textblob_score = 0.5
                        
                    # Normalize to 0-1 scale
                    textblob_normalized = (polarity + 1) / 2
                    
                    ensemble_result['models']['textblob'] = {
                        'sentiment': textblob_sentiment,
                        'score': round(textblob_score, 3),
                        'normalized_score': round(textblob_normalized, 3)
                    }
                except:
                    ensemble_result['models']['textblob'] = {
                        'sentiment': 'error',
                        'score': 0,
                        'normalized_score': 0.5
                    }
            
            # 3. VADER sentiment
            if self.has_vader:
                try:
                    vader_scores = self.vader.polarity_scores(text)
                    compound = vader_scores['compound']
                    
                    # Convert to standard format
                    if compound > 0.05:
                        vader_sentiment = 'positive'
                        vader_score = compound
                    elif compound < -0.05:
                        vader_sentiment = 'negative'
                        vader_score = abs(compound)
                    else:
                        vader_sentiment = 'neutral'
                        vader_score = 0.5
                        
                    # Normalize to 0-1 scale
                    vader_normalized = (compound + 1) / 2
                    
                    ensemble_result['models']['vader'] = {
                        'sentiment': vader_sentiment,
                        'score': round(vader_score, 3),
                        'normalized_score': round(vader_normalized, 3)
                    }
                except:
                    ensemble_result['models']['vader'] = {
                        'sentiment': 'error',
                        'score': 0,
                        'normalized_score': 0.5
                    }
            
            # Calculate ensemble result
            # Get all normalized scores
            normalized_scores = []
            for model_name, model_result in ensemble_result['models'].items():
                if model_result['sentiment'] != 'error':
                    normalized_scores.append(model_result['normalized_score'])
            
            # Calculate average if we have scores
            if normalized_scores:
                avg_score = sum(normalized_scores) / len(normalized_scores)
                
                # Convert to sentiment label
                if avg_score > 0.6:
                    ensemble_sentiment = 'positive'
                elif avg_score < 0.4:
                    ensemble_sentiment = 'negative'
                else:
                    ensemble_sentiment = 'neutral'
                    
                ensemble_result['ensemble_sentiment'] = ensemble_sentiment
                ensemble_result['ensemble_score'] = round(avg_score, 3)
            
            # Add confidence level
            if len(normalized_scores) > 1:
                # Calculate standard deviation to measure agreement
                std_dev = statistics.stdev(normalized_scores) if len(normalized_scores) > 1 else 0
                agreement = 1 - (std_dev * 2)  # Lower std_dev means higher agreement
                agreement = max(0, min(1, agreement))  # Clamp to 0-1
                
                ensemble_result['model_agreement'] = round(agreement, 3)
            
            return ensemble_result
            
        except Exception as e:
            print(f"Error in ensemble sentiment analysis: {str(e)}")
            return {
                'ensemble_sentiment': 'neutral',
                'ensemble_score': 0.5,
                'models': {}
            }

    def _get_fine_grained_sentiment(self, text: str) -> Dict[str, Any]:
        """Get fine-grained sentiment analysis with more detailed categories."""
        # Initialize result structure
        result = {
            "primary": {"category": "unknown", "confidence": 0.0},
            "models": {}
        }
        
        # Check if we have any fine-grained models
        if not self.fine_grained_sentiment and not self.fine_grained_models:
            return result
            
        try:
            # Split text into manageable chunks if too long
            chunks = self._split_text(text)
            
            # Process with default fine-grained model for backward compatibility
            if self.fine_grained_sentiment:
                primary_results = []
                
                for chunk in chunks:
                    if not chunk.strip():
                        continue
                    chunk_result = self.fine_grained_sentiment(chunk)[0]
                    primary_results.append(chunk_result)
                
                if primary_results:
                    # Aggregate results from all chunks
                    categories = {}
                    for res in primary_results:
                        label = res['label'].lower()
                        score = res['score']
                        if label in categories:
                            categories[label] += score
                        else:
                            categories[label] = score
                    
                    # Normalize scores
                    total = sum(categories.values())
                    if total > 0:
                        categories = {k: round(v/total, 3) for k, v in categories.items()}
                    
                    # Get dominant category
                    dominant_category = max(categories.items(), key=lambda x: x[1])
                    
                    result["primary"] = {
                        "category": dominant_category[0],
                        "confidence": dominant_category[1],
                        "distribution": categories
                    }
            
            # Process with additional fine-grained models
            for model_name, model in self.fine_grained_models.items():
                model_results = []
                
                for chunk in chunks:
                    if not chunk.strip():
                        continue
                    try:
                        chunk_result = model(chunk)[0]
                        model_results.append(chunk_result)
                    except Exception as e:
                        print(f"Error analyzing chunk with model {model_name}: {str(e)}")
                
                if model_results:
                    # Aggregate results from all chunks
                    categories = {}
                    for res in model_results:
                        # Ensure the label is lowercase for consistency
                        label = res['label'].lower() if isinstance(res.get('label'), str) else "unknown"
                        score = res['score']
                        if label in categories:
                            categories[label] += score
                        else:
                            categories[label] = score
                    
                    # Normalize scores
                    total = sum(categories.values())
                    if total > 0:
                        categories = {k: round(v/total, 3) for k, v in categories.items()}
                    
                    # Get dominant category
                    dominant_category = max(categories.items(), key=lambda x: x[1])
                    
                    # Store results for this model
                    result["models"][model_name] = {
                        "category": dominant_category[0],
                        "confidence": dominant_category[1],
                        "distribution": categories
                    }
            
            # Calculate sentiment indices based on the fine-grained results
            result["indices"] = self._calculate_sentiment_indices(result)
            
            return result
            
        except Exception as e:
            print(f"Error in fine-grained sentiment analysis: {str(e)}")
            return result
    
    def _calculate_sentiment_indices(self, fine_grained_results: Dict[str, Any]) -> Dict[str, float]:
        """Calculate various sentiment indices based on fine-grained sentiment analysis."""
        indices = {
            "positivity_index": 0.5,  # Default neutral value
            "negativity_index": 0.5,
            "emotional_intensity": 0.0,
            "controversy_score": 0.0,
            "confidence_score": 0.0,
            "esg_relevance": 0.0
        }
        
        try:
            # Extract distributions from all models
            distributions = {}
            confidence_scores = {}
            
            # Add primary model if available
            if "category" in fine_grained_results.get("primary", {}):
                if "distribution" in fine_grained_results["primary"]:
                    distributions["primary"] = fine_grained_results["primary"]["distribution"]
                confidence_scores["primary"] = fine_grained_results["primary"].get("confidence", 0.0)
            
            # Add other models
            for model_name, model_result in fine_grained_results.get("models", {}).items():
                if "distribution" in model_result:
                    distributions[model_name] = model_result["distribution"]
                confidence_scores[model_name] = model_result.get("confidence", 0.0)
            
            # Calculate positivity index
            positive_scores = []
            for model_name, dist in distributions.items():
                if model_name == "financial" or model_name == "primary" or model_name == "news_tone" or model_name == "aspect":
                    pos_score = dist.get("positive", 0.0)
                    positive_scores.append(pos_score)
                elif model_name == "emotion":
                    # For emotion model, consider joy as positive
                    pos_score = dist.get("joy", 0.0) + dist.get("surprise", 0.0) * 0.5
                    positive_scores.append(pos_score)
            
            if positive_scores:
                indices["positivity_index"] = round(sum(positive_scores) / len(positive_scores), 3)
            
            # Calculate negativity index
            negative_scores = []
            for model_name, dist in distributions.items():
                if model_name == "financial" or model_name == "primary" or model_name == "news_tone" or model_name == "aspect":
                    neg_score = dist.get("negative", 0.0)
                    negative_scores.append(neg_score)
                elif model_name == "emotion":
                    # For emotion model, consider sadness, anger, fear, disgust as negative
                    neg_score = dist.get("sadness", 0.0) + dist.get("anger", 0.0) + \
                                dist.get("fear", 0.0) + dist.get("disgust", 0.0)
                    negative_scores.append(neg_score / 4)  # Average of 4 negative emotions
            
            if negative_scores:
                indices["negativity_index"] = round(sum(negative_scores) / len(negative_scores), 3)
            
            # Calculate emotional intensity
            emotion_dist = distributions.get("emotion", {})
            if emotion_dist:
                # Sum all emotional intensities except neutral
                emotional_sum = sum(v for k, v in emotion_dist.items() if k != "neutral")
                indices["emotional_intensity"] = round(emotional_sum, 3)
            
            # Calculate controversy score (high when both positive and negative are high)
            indices["controversy_score"] = round(indices["positivity_index"] * indices["negativity_index"] * 4, 3)
            
            # Calculate confidence score (average of all model confidences)
            if confidence_scores:
                indices["confidence_score"] = round(sum(confidence_scores.values()) / len(confidence_scores), 3)
            
            # Calculate ESG relevance if available
            esg_dist = distributions.get("esg", {})
            if esg_dist:
                # Sum of all ESG categories
                esg_sum = sum(v for k, v in esg_dist.items() if k in ["environmental", "social", "governance"])
                indices["esg_relevance"] = round(esg_sum, 3)
            
            return indices
            
        except Exception as e:
            print(f"Error calculating sentiment indices: {str(e)}")
            return indices

    def summarize_text(self, text: str) -> str:
        """Generate a concise summary of the text."""
        try:
            # Clean and prepare text
            text = text.replace('\n', ' ').strip()
            
            # For very short texts, return as is
            if len(text.split()) < 30:
                return text
            
            # Split text into chunks if it's too long
            chunks = self._split_text(text)
            
            summaries = []
            for chunk in chunks:
                # Calculate appropriate max_length based on input length
                input_words = len(chunk.split())
                max_length = min(130, max(30, input_words // 2))
                min_length = min(30, max(10, input_words // 4))
                
                # Generate summary for each chunk
                summary = self.summarizer(chunk, 
                                       max_length=max_length, 
                                       min_length=min_length, 
                                       do_sample=False)[0]['summary_text']
                summaries.append(summary)
            
            # Combine summaries if there were multiple chunks
            final_summary = ' '.join(summaries)
            return final_summary
            
        except Exception as e:
            print(f"Error generating summary: {str(e)}")
            return text[:200] + '...'  # Return truncated text as fallback

    def extract_topics(self, text: str) -> List[str]:
        """Extract key topics from the text using TF-IDF."""
        try:
            # Prepare text
            text = text.lower()
            
            # Fit and transform the text
            tfidf_matrix = self.vectorizer.fit_transform([text])
            
            # Get feature names and scores
            feature_names = self.vectorizer.get_feature_names_out()
            scores = tfidf_matrix.toarray()[0]
            
            # Get top topics
            top_indices = scores.argsort()[-5:][::-1]  # Get top 5 topics
            topics = [feature_names[i] for i in top_indices]
            
            return topics
            
        except Exception as e:
            print(f"Error extracting topics: {str(e)}")
            return []

    def _split_text(self, text: str, max_length: int = 1024) -> List[str]:
        """Split text into chunks that fit within model's maximum token limit."""
        words = text.split()
        chunks = []
        current_chunk = []
        current_length = 0
        
        for word in words:
            word_length = len(word) + 1  # +1 for space
            if current_length + word_length > max_length:
                chunks.append(' '.join(current_chunk))
                current_chunk = [word]
                current_length = word_length
            else:
                current_chunk.append(word)
                current_length += word_length
        
        if current_chunk:
            chunks.append(' '.join(current_chunk))
            
        return chunks

    def _extract_entities(self, text: str) -> Dict[str, List[str]]:
        """Extract named entities from text."""
        entities = {
            'PERSON': [],
            'ORG': [],
            'GPE': [],  # Countries, cities, states
            'MONEY': [],
            'PERCENT': [],
            'DATE': []
        }
        
        if not self.has_ner:
            return entities
            
        try:
            # Process text with spaCy
            doc = self.nlp(text[:10000])  # Limit text length for performance
            
            # Extract entities
            for ent in doc.ents:
                if ent.label_ in entities:
                    # Clean entity text and deduplicate
                    clean_text = ent.text.strip()
                    if clean_text and clean_text not in entities[ent.label_]:
                        entities[ent.label_].append(clean_text)
            
            return entities
        except Exception as e:
            print(f"Error extracting entities: {str(e)}")
            return entities
    
    def _extract_sentiment_targets(self, text: str, entities: Dict[str, List[str]]) -> List[Dict[str, Any]]:
        """Extract entities that are targets of sentiment expressions."""
        if not self.has_ner:
            return []
            
        try:
            # Get all entities as a flat list
            all_entities = []
            for entity_type, entity_list in entities.items():
                for entity in entity_list:
                    all_entities.append({
                        'text': entity,
                        'type': entity_type
                    })
            
            # Find sentiment targets
            targets = []
            
            # Split text into sentences
            doc = self.nlp(text[:10000])  # Limit text length
            
            for sentence in doc.sents:
                # Skip short sentences
                if len(sentence.text.split()) < 3:
                    continue
                    
                # Check for sentiment in this sentence
                try:
                    sentiment = self.sentiment_pipeline(sentence.text)[0]
                    # Only process if sentiment is strong
                    if sentiment['score'] > 0.7:
                        # Find entities in this sentence
                        for entity in all_entities:
                            if entity['text'] in sentence.text:
                                targets.append({
                                    'entity': entity['text'],
                                    'type': entity['type'],
                                    'sentiment': sentiment['label'].lower(),
                                    'confidence': round(sentiment['score'], 3),
                                    'context': sentence.text
                                })
                except:
                    continue
            
            # Return unique targets
            unique_targets = []
            seen = set()
            for target in targets:
                key = f"{target['entity']}_{target['sentiment']}"
                if key not in seen:
                    seen.add(key)
                    unique_targets.append(target)
            
            return unique_targets
            
        except Exception as e:
            print(f"Error extracting sentiment targets: {str(e)}")
            return []

class TextSummarizer:
    def __init__(self):
        try:
            # Initialize the summarization pipeline
            self.summarizer = pipeline("summarization", model=SUMMARIZATION_MODEL)
        except Exception as e:
            print(f"Error initializing TextSummarizer: {str(e)}")
            # Fallback to default model if specific model fails
            self.summarizer = pipeline("summarization")

    def summarize(self, text: str) -> str:
        """Generate a concise summary of the text."""
        try:
            # Clean and prepare text
            text = text.replace('\n', ' ').strip()
            
            # For very short texts, return as is
            if len(text.split()) < 30:
                return text
            
            # Split text into chunks if it's too long
            chunks = self._split_text(text)
            
            summaries = []
            for chunk in chunks:
                # Calculate appropriate max_length based on input length
                input_words = len(chunk.split())
                max_length = min(130, max(30, input_words // 2))
                min_length = min(30, max(10, input_words // 4))
                
                # Generate summary for each chunk
                summary = self.summarizer(chunk, 
                                       max_length=max_length, 
                                       min_length=min_length, 
                                       do_sample=False)[0]['summary_text']
                summaries.append(summary)
            
            # Combine summaries if there were multiple chunks
            final_summary = ' '.join(summaries)
            return final_summary
            
        except Exception as e:
            print(f"Error generating summary: {str(e)}")
            return text[:200] + '...'  # Return truncated text as fallback

    def _split_text(self, text: str, max_length: int = 1024) -> List[str]:
        """Split text into chunks that fit within model's maximum token limit."""
        words = text.split()
        chunks = []
        current_chunk = []
        current_length = 0
        
        for word in words:
            word_length = len(word) + 1  # +1 for space
            if current_length + word_length > max_length:
                chunks.append(' '.join(current_chunk))
                current_chunk = [word]
                current_length = word_length
            else:
                current_chunk.append(word)
                current_length += word_length
        
        if current_chunk:
            chunks.append(' '.join(current_chunk))
            
        return chunks

class TextToSpeechConverter:
    def __init__(self):
        self.output_dir = AUDIO_OUTPUT_DIR
        self.translator = get_translator()
        os.makedirs(self.output_dir, exist_ok=True)
    
    def generate_audio(self, text: str, filename: str) -> str:
        """Convert text to Hindi speech and save as audio file."""
        try:
            print(f"Translating text to Hindi: {text[:100]}...")
            
            # First translate the text to Hindi
            # Use chunking for long text to avoid translation limits
            chunks = []
            for i in range(0, len(text), 1000):
                chunk = text[i:i+1000]
                try:
                    translated_chunk = self.translator.translate(chunk, dest='hi').text
                    chunks.append(translated_chunk)
                    print(f"Translated chunk {i//1000 + 1}")
                except Exception as e:
                    print(f"Error translating chunk {i//1000 + 1}: {str(e)}")
                    # If translation fails, use original text
                    chunks.append(chunk)
            
            hindi_text = ' '.join(chunks)
            print(f"Translation complete. Hindi text length: {len(hindi_text)}")
            
            # Generate Hindi speech
            print("Generating Hindi speech...")
            tts = gTTS(text=hindi_text, lang='hi', slow=False)
            output_path = os.path.join(self.output_dir, f"{filename}.mp3")
            tts.save(output_path)
            print(f"Audio saved to {output_path}")
            
            return output_path
        except Exception as e:
            print(f"Error in TTS conversion: {str(e)}")
            # Fallback to original text if translation fails
            print("Using fallback English TTS")
            tts = gTTS(text=text, lang='en')
            output_path = os.path.join(self.output_dir, f"{filename}.mp3")
            tts.save(output_path)
            return output_path

class ComparativeAnalyzer:
    def __init__(self):
        pass
    
    def analyze_coverage(self, articles: List[Dict[str, Any]], company_name: str = None) -> Dict[str, Any]:
        """Perform comparative analysis across articles."""
        if not articles:
            return {
                "topics": [],
                "sentiment_distribution": {},
                "coverage_differences": ["No articles found for analysis."],
                "final_sentiment": "No articles found for analysis.",
                "total_articles": 0,
                "sentiment_indices": {}
            }
        
        # Debug: Print articles for analysis
        print(f"Analyzing {len(articles)} articles for company: {company_name}")
        
        # Add company name to each article if provided
        if company_name:
            for article in articles:
                article['company'] = company_name
        
        # Calculate sentiment distribution
        print("Calculating sentiment distribution...")
        sentiment_dist = self._get_sentiment_distribution(articles)
        print("Sentiment distribution result:")
        print(sentiment_dist)
        
        # Analyze common topics
        topics = self._analyze_topics(articles)
        
        # Analyze coverage differences
        differences = self._analyze_coverage_differences(articles)
        
        # Get final sentiment analysis
        final_sentiment = self._get_final_sentiment(sentiment_dist, articles)
        
        result = {
            "topics": topics,
            "sentiment_distribution": sentiment_dist,
            "coverage_differences": differences,
            "final_sentiment": final_sentiment,
            "total_articles": len(articles),
            "sentiment_indices": sentiment_dist.get("sentiment_indices", {})
        }
        
        # Debug: Print final result
        print("Final comparative analysis result:")
        print(result)
        
        return result

    def _get_sentiment_distribution(self, articles: List[Dict[str, Any]]) -> Dict[str, Any]:
        """Calculate distribution of sentiments across articles."""
        # Basic sentiment distribution
        basic_distribution = {'positive': 0, 'negative': 0, 'neutral': 0}
        
        # Fine-grained sentiment distribution
        fine_grained_distribution = {}
        
        # Sentiment scores
        sentiment_scores = []
        
        # Sentiment indices aggregation
        sentiment_indices = {
            "positivity_index": [],
            "negativity_index": [],
            "emotional_intensity": [],
            "controversy_score": [],
            "confidence_score": [],
            "esg_relevance": []
        }
        
        # Debug: Print articles for sentiment distribution
        print(f"Processing {len(articles)} articles for sentiment distribution")
        
        # Process each article
        for i, article in enumerate(articles):
            try:
                # Debug: Print article sentiment data
                print(f"Article {i+1} sentiment data:")
                print(f"  Basic sentiment: {article.get('sentiment', 'N/A')}")
                print(f"  Fine-grained: {article.get('fine_grained_sentiment', {})}")
                print(f"  Sentiment indices: {article.get('sentiment_indices', {})}")
                
                # Basic sentiment
                sentiment = article.get('sentiment', 'neutral')
                if isinstance(sentiment, str):
                    sentiment = sentiment.lower()
                    # Ensure we have a valid sentiment category
                    if sentiment not in basic_distribution:
                        sentiment = 'neutral'
                    basic_distribution[sentiment] = basic_distribution.get(sentiment, 0) + 1
                else:
                    # Handle non-string sentiment values
                    basic_distribution['neutral'] = basic_distribution.get('neutral', 0) + 1
                
                # Sentiment score
                score = article.get('sentiment_score', 0.0)
                if isinstance(score, (int, float)):
                    sentiment_scores.append(score)
                
                # Fine-grained sentiment
                fine_grained = article.get('fine_grained_sentiment', {})
                if isinstance(fine_grained, dict) and 'category' in fine_grained:
                    category = fine_grained['category']
                    if isinstance(category, str):
                        category = category.lower()
                        fine_grained_distribution[category] = fine_grained_distribution.get(category, 0) + 1
                
                # Collect sentiment indices
                indices = article.get('sentiment_indices', {})
                if isinstance(indices, dict):
                    for index_name, index_values in sentiment_indices.items():
                        if index_name in indices and isinstance(indices[index_name], (int, float)):
                            index_values.append(indices[index_name])
            except Exception as e:
                print(f"Error processing article {i+1} for sentiment distribution: {str(e)}")
                # Continue with next article
                continue
        
        # Debug: Print collected data
        print("Collected sentiment data:")
        print(f"  Basic distribution: {basic_distribution}")
        print(f"  Fine-grained distribution: {fine_grained_distribution}")
        print(f"  Sentiment scores: {sentiment_scores}")
        print(f"  Sentiment indices collected: {sentiment_indices}")
        
        # Calculate average sentiment score with fallback
        avg_sentiment_score = 0.5  # Default neutral value
        if sentiment_scores:
            avg_sentiment_score = sum(sentiment_scores) / len(sentiment_scores)
        
        # Calculate sentiment volatility (standard deviation) with fallback
        sentiment_volatility = 0
        if len(sentiment_scores) > 1:
            try:
                sentiment_volatility = statistics.stdev(sentiment_scores)
            except Exception as e:
                print(f"Error calculating sentiment volatility: {str(e)}")
        
        # Calculate average sentiment indices with fallbacks
        avg_indices = {}
        for index_name, values in sentiment_indices.items():
            if values:
                avg_indices[index_name] = round(sum(values) / len(values), 3)
            else:
                # Provide default values for empty indices
                if index_name in ["positivity_index", "confidence_score"]:
                    avg_indices[index_name] = 0.5  # Neutral default
                else:
                    avg_indices[index_name] = 0.0  # Zero default for other indices
        
        # Ensure all expected indices exist
        for index_name in ["positivity_index", "negativity_index", "emotional_intensity", 
                          "controversy_score", "confidence_score", "esg_relevance"]:
            if index_name not in avg_indices:
                avg_indices[index_name] = 0.5 if index_name in ["positivity_index", "confidence_score"] else 0.0
        
        # Ensure we have at least one item in each distribution
        if not any(basic_distribution.values()):
            basic_distribution['neutral'] = 1
        
        # Ensure fine_grained_distribution has at least one entry if empty
        if not fine_grained_distribution:
            fine_grained_distribution['neutral'] = 1
        
        result = {
            "basic": basic_distribution,
            "fine_grained": fine_grained_distribution,
            "avg_score": round(avg_sentiment_score, 3),
            "volatility": round(sentiment_volatility, 3),
            "sentiment_indices": avg_indices
        }
        
        # Debug: Print final sentiment distribution result
        print("Final sentiment distribution result:")
        print(result)
        
        return result

    def _analyze_topics(self, articles: List[Dict[str, Any]]) -> List[str]:
        """Analyze common topics across articles using TF-IDF."""
        try:
            # Combine title and content for better topic extraction
            texts = [f"{article.get('title', '')} {article.get('content', '')}" for article in articles]
            
            # Create and fit TF-IDF
            vectorizer = TfidfVectorizer(
                max_features=10,
                stop_words='english',
                ngram_range=(1, 2),
                token_pattern=r'(?u)\b[A-Za-z][A-Za-z+\'-]*[A-Za-z]+\b'  # Improved pattern
            )
            
            # Clean and normalize texts
            cleaned_texts = []
            for text in texts:
                # Remove numbers and special characters
                cleaned = re.sub(r'\d+', '', text)
                cleaned = re.sub(r'[^\w\s]', ' ', cleaned)
                cleaned_texts.append(cleaned.lower())
            
            tfidf_matrix = vectorizer.fit_transform(cleaned_texts)
            feature_names = vectorizer.get_feature_names_out()
            
            # Get average TF-IDF scores for each term
            avg_scores = tfidf_matrix.mean(axis=0).A1
            
            # Sort terms by score and return top meaningful terms
            sorted_indices = avg_scores.argsort()[-5:][::-1]
            meaningful_topics = []
            
            for idx in sorted_indices:
                topic = feature_names[idx]
                # Filter out single characters and common words
                if len(topic) > 1 and topic not in {'000', 'com', 'said', 'says', 'year', 'new', 'one'}:
                    meaningful_topics.append(topic)
                if len(meaningful_topics) >= 5:
                    break
            
            return meaningful_topics
            
        except Exception as e:
            print(f"Error analyzing topics: {str(e)}")
            return []

    def _analyze_coverage_differences(self, articles: List[Dict[str, Any]]) -> List[str]:
        """Analyze how coverage differs across articles."""
        if not articles:
            return ["No articles available for comparison"]
        
        differences = []
        
        # Compare sentiment differences
        sentiments = [article.get('sentiment', 'neutral').lower() for article in articles]
        unique_sentiments = set(sentiments)
        if len(unique_sentiments) > 1:
            pos_count = sentiments.count('positive')
            neg_count = sentiments.count('negative')
            neu_count = sentiments.count('neutral')
            
            if pos_count > 0 and neg_count > 0:
                differences.append(f"Coverage sentiment varies significantly: {pos_count} positive, {neg_count} negative, and {neu_count} neutral articles.")
        
        # Compare fine-grained sentiment differences
        fine_grained_categories = []
        for article in articles:
            fine_grained = article.get('fine_grained_sentiment', {})
            if isinstance(fine_grained, dict) and 'category' in fine_grained:
                category = fine_grained['category']
                if isinstance(category, str):
                    fine_grained_categories.append(category.lower())
        
        unique_categories = set(fine_grained_categories)
        if len(unique_categories) > 2:  # More than 2 different categories
            category_counts = {}
            for category in fine_grained_categories:
                category_counts[category] = category_counts.get(category, 0) + 1
            
            top_categories = sorted(category_counts.items(), key=lambda x: x[1], reverse=True)[:3]
            categories_str = ", ".join([f"{cat} ({count})" for cat, count in top_categories])
            differences.append(f"Articles show diverse sentiment categories: {categories_str}")
        
        # Compare sentiment indices
        indices_differences = []
        positivity_values = []
        negativity_values = []
        controversy_values = []
        
        for article in articles:
            indices = article.get('sentiment_indices', {})
            if indices:
                if 'positivity_index' in indices:
                    positivity_values.append(indices['positivity_index'])
                if 'negativity_index' in indices:
                    negativity_values.append(indices['negativity_index'])
                if 'controversy_score' in indices:
                    controversy_values.append(indices['controversy_score'])
        
        # Check for high variance in positivity
        if positivity_values and len(positivity_values) > 1:
            if max(positivity_values) - min(positivity_values) > 0.4:
                indices_differences.append("Articles show significant variation in positivity levels")
        
        # Check for high variance in negativity
        if negativity_values and len(negativity_values) > 1:
            if max(negativity_values) - min(negativity_values) > 0.4:
                indices_differences.append("Articles show significant variation in negativity levels")
        
        # Check for high controversy scores
        if controversy_values:
            high_controversy = [v for v in controversy_values if v > 0.5]
            if high_controversy:
                indices_differences.append(f"{len(high_controversy)} articles show high controversy scores")
        
        if indices_differences:
            differences.append("Sentiment index analysis: " + "; ".join(indices_differences))
        
        # Compare source differences
        sources = [article.get('source', '').lower() for article in articles]
        source_counts = {}
        for source in sources:
            if source:
                source_counts[source] = source_counts.get(source, 0) + 1
        
        if len(source_counts) > 1:
            top_sources = sorted(source_counts.items(), key=lambda x: x[1], reverse=True)[:3]
            sources_str = ", ".join([f"{source} ({count})" for source, count in top_sources])
            differences.append(f"Coverage spans multiple sources: {sources_str}")
        
        # If no significant differences found
        if not differences:
            differences.append("Coverage is relatively consistent across articles")
        
        return differences

    def _get_final_sentiment(self, distribution: Dict[str, Any], articles: List[Dict[str, Any]]) -> str:
        """Generate final sentiment analysis based on distribution and article content."""
        try:
            # Get basic sentiment counts
            basic_dist = distribution.get('basic', {})
            positive_count = basic_dist.get('positive', 0)
            negative_count = basic_dist.get('negative', 0)
            neutral_count = basic_dist.get('neutral', 0)
            
            total_articles = positive_count + negative_count + neutral_count
            
            if total_articles == 0:
                return "No sentiment data available"
            
            # Calculate percentages
            positive_pct = (positive_count / total_articles) * 100
            negative_pct = (negative_count / total_articles) * 100
            neutral_pct = (neutral_count / total_articles) * 100
            
            # Get average sentiment score
            avg_score = distribution.get('avg_score', 0.5)
            
            # Get volatility
            volatility = distribution.get('volatility', 0)
            
            # Get sentiment indices
            indices = distribution.get('sentiment_indices', {})
            positivity_index = indices.get('positivity_index', 0.5)
            negativity_index = indices.get('negativity_index', 0.5)
            emotional_intensity = indices.get('emotional_intensity', 0)
            controversy_score = indices.get('controversy_score', 0)
            esg_relevance = indices.get('esg_relevance', 0)
            
            # Generate analysis text
            analysis = []
            
            # Overall sentiment
            if positive_pct > 60:
                analysis.append(f"Overall sentiment is predominantly positive ({positive_pct:.1f}%).")
            elif negative_pct > 60:
                analysis.append(f"Overall sentiment is predominantly negative ({negative_pct:.1f}%).")
            elif neutral_pct > 60:
                analysis.append(f"Overall sentiment is predominantly neutral ({neutral_pct:.1f}%).")
            elif positive_pct > negative_pct and positive_pct > neutral_pct:
                analysis.append(f"Overall sentiment leans positive ({positive_pct:.1f}%), with some mixed coverage.")
            elif negative_pct > positive_pct and negative_pct > neutral_pct:
                analysis.append(f"Overall sentiment leans negative ({negative_pct:.1f}%), with some mixed coverage.")
            else:
                analysis.append(f"Sentiment is mixed across sources (Positive: {positive_pct:.1f}%, Negative: {negative_pct:.1f}%, Neutral: {neutral_pct:.1f}%).")
            
            # Sentiment indices insights
            if positivity_index > 0.7:
                analysis.append(f"High positivity index ({positivity_index:.2f}) indicates strong positive sentiment.")
            elif positivity_index < 0.3 and negativity_index > 0.7:
                analysis.append(f"High negativity index ({negativity_index:.2f}) with low positivity suggests strongly negative coverage.")
            
            if emotional_intensity > 0.6:
                analysis.append(f"Coverage shows high emotional intensity ({emotional_intensity:.2f}).")
            
            if controversy_score > 0.5:
                analysis.append(f"Coverage shows significant controversy ({controversy_score:.2f}), with polarized opinions.")
            
            if esg_relevance > 0.4:
                analysis.append(f"Coverage includes significant ESG-related content ({esg_relevance:.2f}).")
            
            # Volatility
            if volatility > 0.2:
                analysis.append(f"Sentiment varies considerably across articles (volatility: {volatility:.2f}).")
            else:
                analysis.append(f"Sentiment is relatively consistent across articles (volatility: {volatility:.2f}).")
            
            return " ".join(analysis)
            
        except Exception as e:
            print(f"Error generating final sentiment: {str(e)}")
            return "Unable to generate final sentiment analysis due to an error."