File size: 1,609 Bytes
88e0bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from typing import List, Dict
from PIL.Image import Image

import torch
from transformers import AutoModel, AutoProcessor


MODEL_NAME = "Marqo/marqo-fashionCLIP"


class FashionCLIPEncoder:
    def __init__(self):
        self.processor = AutoProcessor.from_pretrained(
            MODEL_NAME, trust_remote_code=True
        )
        self.model = AutoModel.from_pretrained(MODEL_NAME, trust_remote_code=True)

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = self.model.to(self.device)
        self.model.eval()

    def encode_text(self, texts: List[str]) -> List[List[float]]:
        kwargs = {
            "padding": "max_length",
            "return_tensors": "pt",
            "truncation": True,
        }
        inputs = self.processor(text=texts, **kwargs)

        with torch.no_grad():
            batch = {k: v.to(self.device) for k, v in inputs.items()}
            return self._encode_text(batch)

    def encode_images(self, images: List[Image]) -> List[List[float]]:
        kwargs = {
            "return_tensors": "pt",
        }
        inputs = self.processor(images=images, **kwargs)

        with torch.no_grad():
            batch = {k: v.to(self.device) for k, v in inputs.items()}
            return self._encode_images(batch)

    def _encode_text(self, batch: Dict) -> List[List[float]]:
        return self.model.get_text_features(**batch).detach().cpu().numpy().tolist()

    def _encode_images(self, batch: Dict) -> List[List[float]]:
        return self.model.get_image_features(**batch).detach().cpu().numpy().tolist()