# Written On: 10 Feb 2025 # Last Updaate: 10 Feb 2025 #from transformers.utils import logging #logging.set_verbosity_error() #import warnings #warnings.filterwarnings("ignore", # message="Using the model-agnostic default `max_length`") import gradio as gr from transformers import pipeline pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") def launch(input): out = pipe(input) return out[0]['generated_text'] iface = gr.Interface(launch, inputs=gr.Image(type='pil'), outputs="text") iface.launch(share=True)