File size: 1,286 Bytes
3c28019 71dafc2 3c28019 71dafc2 ac84e50 71dafc2 3c28019 71dafc2 3c28019 35aa952 3c28019 24d3701 3c28019 71dafc2 3c28019 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import gradio as gr
from transformers import pipeline
classifier = pipeline("sentiment-analysis", model="pradanaadn/sucidal-text-classification-distillbert")
def text_classification(text):
label_mapping = {
'LABEL_0': 'Non-Suicide',
'LABEL_1': 'Suicide',
}
result= classifier(text)
sentiment_label = label_mapping[result[0]['label']]
sentiment_score = result[0]['score']
formatted_output = f"This sentiment is {sentiment_label} with the probability {sentiment_score*100:.2f}%"
return formatted_output
examples=["It's been a rollercoaster lately. One moment I'm on top of the world, full of energy, and the next, I'm down in the dumps, feeling hopeless", "I can't keep going like this anymore. Everything feels hopeless, and I don't see a way out. I feel like the world would be better off without me."]
io = gr.Interface(fn=text_classification,
inputs= gr.Textbox(lines=2, label="Text", placeholder="Enter title here..."),
outputs=gr.Textbox(lines=2, label="Text Classification Result"),
title="Suicidal Intent Detection",
description="Enter a text and see the text classification result!",
examples=examples)
io.launch() |