from transformers import T5EncoderModel, T5Config from huggingface_hub import hf_hub_download import torch.nn as nn import torch NUM_LABELS = 4 class T5ClassificationModel(nn.Module): def __init__(self, model_path="t5-small", freeze_weights=True): super(T5ClassificationModel, self).__init__() if model_path == "t5-small": self.base_model = T5EncoderModel.from_pretrained(model_path) else: pytorch_model_path = hf_hub_download( repo_id=model_path, repo_type="model", filename="pytorch_model.bin" ) config = T5Config.from_pretrained(model_path) self.base_model = T5EncoderModel(config) # Load the state_dict and remove unwanted keys state_dict = torch.load(pytorch_model_path, map_location=torch.device("cpu")) filtered_state_dict = { k.replace("base_model.", ""): v for k, v in state_dict.items() if not k.startswith("classifier.") } self.base_model.load_state_dict(filtered_state_dict) # For push to hub. self.config = self.base_model.config # Freeze the base model's weights if freeze_weights: for param in self.base_model.parameters(): param.requires_grad = False # Add a classification head self.classifier = nn.Linear(self.base_model.config.hidden_size, NUM_LABELS) def forward(self, input_ids, attention_mask, labels=None): with torch.no_grad(): # No gradients for the base model outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask) # Sum token representations summed_representation = outputs.last_hidden_state.sum(dim=1) # Summing over the sequence length (dim=1) logits = self.classifier(summed_representation) # Pass the summed representation to the classifier loss = None if labels is not None: loss_fn = nn.BCEWithLogitsLoss() loss = loss_fn(logits, labels.float()) return {"loss": loss, "logits": logits}