from transformers import AutoModel from huggingface_hub import hf_hub_download from safetensors.torch import load_file import torch.nn as nn import torch # Number of labels (update if different) NUM_LABELS = 4 # Model with frozen DistilBERT weights class DistilBertClassificationModel(nn.Module): def __init__( self, model_path="distilbert/distilbert-base-uncased", freeze_weights=True, ): super(DistilBertClassificationModel, self).__init__() if model_path == "distilbert/distilbert-base-uncased": self.base_model = AutoModel.from_pretrained(model_path) else: pytorch_model_path = hf_hub_download( repo_id=model_path, repo_type="model", filename="model.safetensors" ) state_dict = load_file(pytorch_model_path) filtered_state_dict = { k.replace("base_model.", ""): v for k, v in state_dict.items() if not k.startswith("classifier.") } self.base_model = AutoModel.from_pretrained("distilbert/distilbert-base-uncased", state_dict=filtered_state_dict) # For push to hub. self.config = self.base_model.config # Freeze the base model's weights if freeze_weights: for param in self.base_model.parameters(): param.requires_grad = False # Add a classification head self.classifier = nn.Linear(self.base_model.config.hidden_size, NUM_LABELS) def forward(self, input_ids, attention_mask, labels=None): with torch.no_grad(): # No gradients for the base model outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask) # Sum hidden states over the sequence dimension summed_representation = outputs.last_hidden_state.sum(dim=1) # Summing over sequence length logits = self.classifier(summed_representation) # Pass the summed representation to the classifier loss = None if labels is not None: loss_fn = nn.BCEWithLogitsLoss() loss = loss_fn(logits, labels.float()) return {"loss": loss, "logits": logits}