Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- src/model_load.py +62 -0
- src/preprocess.py +73 -0
- src/vdb.py +16 -0
src/model_load.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
2 |
+
from langchain.llms import HuggingFacePipeline
|
3 |
+
from transformers import AutoTokenizer, pipeline, AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
+
import torch
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
from langchain.llms import HuggingFaceHub
|
7 |
+
from langchain.chains import LLMChain
|
8 |
+
|
9 |
+
def load_model():
|
10 |
+
|
11 |
+
model_name="tiiuae/Falcon3-7B-Instruct"
|
12 |
+
max_memory = {0: "24GB", "cpu": "30GB"}
|
13 |
+
# Cargar tokenizer y modelo de Hugging Face
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,
|
16 |
+
torch_dtype=torch.bfloat16).to("cuda")
|
17 |
+
|
18 |
+
# Crear pipeline de generación de texto
|
19 |
+
text_generation_pipeline = pipeline(
|
20 |
+
"text-generation",
|
21 |
+
model=model,
|
22 |
+
tokenizer=tokenizer,
|
23 |
+
max_new_tokens=128,
|
24 |
+
repetition_penalty=1.2,
|
25 |
+
device_map="auto"
|
26 |
+
)
|
27 |
+
# Crear el LLM compatible con LangChain
|
28 |
+
llm = HuggingFacePipeline(pipeline=text_generation_pipeline)
|
29 |
+
|
30 |
+
# Crear la plantilla de prompt que tomará el texto y la pregunta
|
31 |
+
prompt_template = """
|
32 |
+
Dado el siguiente texto extraído de varios documentos y una pregunta, crea una respuesta utilizando la información proporcionada. Si la pregunta sale por fuera de la información proporcionada responde con "No tengo información al respecto" y corta la respuesta.
|
33 |
+
|
34 |
+
**Documentos relevantes:**
|
35 |
+
{documento}
|
36 |
+
|
37 |
+
**Pregunta:**
|
38 |
+
{pregunta}
|
39 |
+
|
40 |
+
**Respuesta:**
|
41 |
+
"""
|
42 |
+
|
43 |
+
# Crear el prompt con las variables necesarias
|
44 |
+
prompt = PromptTemplate(input_variables=["documento", "pregunta"], template=prompt_template)
|
45 |
+
|
46 |
+
# Crear una cadena de LLMChain que combine el retriever y el prompt
|
47 |
+
qa_chain = prompt | llm
|
48 |
+
return qa_chain
|
49 |
+
def ask(pregunta: str,retriever,qa_chain):
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
#Busqueda de documentos mediante el retriever
|
54 |
+
documentos=retriever.invoke(pregunta)
|
55 |
+
|
56 |
+
#Generacion de la respuesta
|
57 |
+
respuesta = qa_chain.invoke({
|
58 |
+
"documento": "\n".join([doc.page_content for doc in documentos]),
|
59 |
+
"pregunta": pregunta
|
60 |
+
})
|
61 |
+
|
62 |
+
return respuesta
|
src/preprocess.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
import re
|
4 |
+
|
5 |
+
class Loader:
|
6 |
+
"""Clase encargada de la carga desde PDFs,
|
7 |
+
admite PDFs con texto seleccionable unicamente. Realiza
|
8 |
+
carga y devuelve lista de chunks de texto.
|
9 |
+
"""
|
10 |
+
def __init__(self, path: str):
|
11 |
+
self.path = path
|
12 |
+
|
13 |
+
def load_docs(self, pag: slice = None):
|
14 |
+
"""Carga el PDF y devuelve lista de chunks de texto."""
|
15 |
+
loader = PyMuPDFLoader(self.path)
|
16 |
+
docs = loader.load()
|
17 |
+
if pag:
|
18 |
+
docs = docs[pag]
|
19 |
+
return [doc.page_content for doc in docs]
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def limpiar_texto(texto: str) -> str:
|
23 |
+
"""
|
24 |
+
Limpia el texto eliminando caracteres basura y normalizando espacios y saltos de línea.
|
25 |
+
Esta función está diseñada para preprocesar libros u otros documentos largos,
|
26 |
+
facilitando su uso en aplicaciones de Retrieval Augmented Generation (RAG).
|
27 |
+
|
28 |
+
Args:
|
29 |
+
texto (str): El texto original a limpiar.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
str: El texto limpio.
|
33 |
+
"""
|
34 |
+
# 1. Eliminar saltos de línea, tabulaciones y otros caracteres de control
|
35 |
+
texto = re.sub(r'[\r\n\t]+', ' ', texto)
|
36 |
+
|
37 |
+
# 2. Eliminar caracteres no imprimibles (códigos de control)
|
38 |
+
texto = re.sub(r'[\x00-\x1F\x7F]', '', texto)
|
39 |
+
|
40 |
+
# 3. Sustituir múltiples espacios por uno solo
|
41 |
+
texto = re.sub(r'\s+', ' ', texto)
|
42 |
+
|
43 |
+
# 4. Eliminar caracteres que no sean letras, dígitos o signos de puntuación comunes
|
44 |
+
# Se conservan letras con acentos y caracteres propios del español.
|
45 |
+
texto = re.sub(r'[^\w\s.,;:¡!¿?\-áéíóúÁÉÍÓÚñÑ]', '', texto)
|
46 |
+
|
47 |
+
# 5. Eliminar espacios al inicio y al final
|
48 |
+
texto = texto.strip()
|
49 |
+
|
50 |
+
return texto
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def splitter(texto, chunk_size, chunk_overlap):
|
54 |
+
"""
|
55 |
+
Divide el texto en chunks
|
56 |
+
|
57 |
+
Args:
|
58 |
+
chunk_size (int): Largo del chunk.
|
59 |
+
chunk_overlap (int): Sobreposición de chunks.
|
60 |
+
texto (list): lista de textos a procesar.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
list: Los textos en chunks.
|
64 |
+
"""
|
65 |
+
splitter = RecursiveCharacterTextSplitter(
|
66 |
+
chunk_size=chunk_size,
|
67 |
+
chunk_overlap=chunk_overlap,
|
68 |
+
length_function=len,
|
69 |
+
separators=["\n\n", "\n", " ", ""]
|
70 |
+
)
|
71 |
+
chunks = splitter.create_documents(texto)
|
72 |
+
|
73 |
+
return chunks
|
src/vdb.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
from langchain.schema import Document
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
class EmbeddingGen:
|
7 |
+
|
8 |
+
def __init__(self, model_name: str):
|
9 |
+
self.model = SentenceTransformer(model_name)
|
10 |
+
|
11 |
+
def embed_documents(self, chunks):
|
12 |
+
return [self.model.encode(chunk) for chunk in chunks]
|
13 |
+
|
14 |
+
def embed_query(self, text):
|
15 |
+
return self.model.encode(text)
|
16 |
+
|