File size: 6,820 Bytes
0b75c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os, requests, time
import oracledb
from langchain_text_splitters import (
    Language,
    RecursiveCharacterTextSplitter,
)
from langchain_upstage import UpstageLayoutAnalysisLoader
from bs4 import BeautifulSoup
from langchain_core.documents import BaseDocumentTransformer, Document
from langchain_upstage import UpstageEmbeddings
from langchain_community.vectorstores.oraclevs import OracleVS
from langchain_community.vectorstores.utils import DistanceStrategy


def upload_db_harrypotter():
  global retriever

  username=os.environ["DB_USER"]
  password=os.environ["DB_PASSWORD"]
  dsn=os.environ["DSN"]

  con = oracledb.connect(user=username, password=password, dsn=dsn)

  try: 
      conn23c = oracledb.connect(user=username, password=password, dsn=dsn)
      print("Connection successful!", conn23c.version)
  except Exception as e:
      print("Connection failed!")

  file_path = "./Harry Potter and the Sorcerers Stone.pdf" # Path to the PDF file
  #file_path = "https://en.wikipedia.org/wiki/Donald_Trump"

  text_splitter = RecursiveCharacterTextSplitter.from_language(
      chunk_size=1500, chunk_overlap=200, language=Language.HTML
  )

  if file_path.endswith(".pdf"): # Check if the document is PDF
      #print("pdf file")
      layzer = UpstageLayoutAnalysisLoader(file_path, split="page")

      # For improved memory efficiency, consider using the lazy_load method to load documents page by page.
      docs = layzer.load()  # or layzer.lazy_load()

      docs = text_splitter.split_documents(docs)
  elif file_path.startswith("http"): # Check if the document is from a website
      #print("url")
      # Specify the URL of the Wikipedia page you want to scrape
      url = file_path

      # Send a GET request to the URL
      response = requests.get(url)

      # Create a BeautifulSoup object to parse the HTML content
      soup = BeautifulSoup(response.content, "html.parser")

      # Find the main content element on the page
      content = soup.find(id="mw-content-text")

      # Attempt to find and remove the unnecessary section by looking for common identifiers
      for section_id in ["References", "references", "See_also", "External_links", "Footnotes", "Further_reading"]:
          elements = content.find(id=section_id)
          if elements:
              elements.decompose()

      for section_class in ["reflist", "references", "navbox",]:
          elements = content.find_all(class_=section_class)
          for element in elements:
              element.decompose()

      # Extract the text from the modified content element
      text = content.get_text()

      docs = Document(page_content=text)

      docs = text_splitter.split_documents([docs])  

  upstage_embeddings = UpstageEmbeddings(model="solar-embedding-1-large")
      
  # Configure the vector store with the model, table name, and using the indicated distance strategy for the similarity search and vectorize the chunks
  s1time = time.time()

  knowledge_base = OracleVS.from_documents(docs, upstage_embeddings, client=conn23c, 
                      table_name="text_embeddings_HarryPotter", 
                      distance_strategy=DistanceStrategy.DOT_PRODUCT)    

  s2time =  time.time()      
  #print( f"Vectorizing and inserting chunks duration: {round(s2time - s1time, 1)} sec.")

  vector_store = OracleVS(client=conn23c, 
                          embedding_function=upstage_embeddings, 
                          table_name="text_embeddings_HarryPotter", 
                          distance_strategy=DistanceStrategy.DOT_PRODUCT)

  retriever = vector_store.as_retriever()


def upload_db_Trump():
  global retriever

  username=os.environ["DB_USER"]
  password=os.environ["DB_PASSWORD"]
  dsn=os.environ["DSN"]

  con = oracledb.connect(user=username, password=password, dsn=dsn)

  try: 
      conn23c = oracledb.connect(user=username, password=password, dsn=dsn)
      print("Connection successful!", conn23c.version)
  except Exception as e:
      print("Connection failed!")

#   file_path = "./Harry Potter and the Sorcerers Stone.pdf" # Path to the PDF file
  file_path = "https://en.wikipedia.org/wiki/Donald_Trump"

  text_splitter = RecursiveCharacterTextSplitter.from_language(
      chunk_size=1500, chunk_overlap=200, language=Language.HTML
  )

  if file_path.endswith(".pdf"): # Check if the document is PDF
      #print("pdf file")
      layzer = UpstageLayoutAnalysisLoader(file_path, split="page")

      # For improved memory efficiency, consider using the lazy_load method to load documents page by page.
      docs = layzer.load()  # or layzer.lazy_load()

      docs = text_splitter.split_documents(docs)
  elif file_path.startswith("http"): # Check if the document is from a website
      #print("url")
      # Specify the URL of the Wikipedia page you want to scrape
      url = file_path

      # Send a GET request to the URL
      response = requests.get(url)

      # Create a BeautifulSoup object to parse the HTML content
      soup = BeautifulSoup(response.content, "html.parser")

      # Find the main content element on the page
      content = soup.find(id="mw-content-text")

      # Attempt to find and remove the unnecessary section by looking for common identifiers
      for section_id in ["References", "references", "See_also", "External_links", "Footnotes", "Further_reading"]:
          elements = content.find(id=section_id)
          if elements:
              elements.decompose()

      for section_class in ["reflist", "references", "navbox",]:
          elements = content.find_all(class_=section_class)
          for element in elements:
              element.decompose()

      # Extract the text from the modified content element
      text = content.get_text()

      docs = Document(page_content=text)

      docs = text_splitter.split_documents([docs])  

  upstage_embeddings = UpstageEmbeddings(model="solar-embedding-1-large")
      
  # Configure the vector store with the model, table name, and using the indicated distance strategy for the similarity search and vectorize the chunks
  s1time = time.time()

  knowledge_base = OracleVS.from_documents(docs, upstage_embeddings, client=conn23c, 
                      table_name="text_embeddings_Trump", 
                      distance_strategy=DistanceStrategy.DOT_PRODUCT)    

  s2time =  time.time()      
  #print( f"Vectorizing and inserting chunks duration: {round(s2time - s1time, 1)} sec.")

  vector_store = OracleVS(client=conn23c, 
                          embedding_function=upstage_embeddings, 
                          table_name="text_embeddings_Trump", 
                          distance_strategy=DistanceStrategy.DOT_PRODUCT)

  retriever = vector_store.as_retriever()


def main():
    upload_db_harrypotter()

if __name__ == "__main__":
    main()