Spaces:
Running
Running
Deploy my app
Browse files- .env +1 -0
- app.py +198 -0
- requirements.txt +10 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
GROQ_API_KEY=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
|
app.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
import numpy as np
|
3 |
+
import yfinance as yf
|
4 |
+
import os
|
5 |
+
import streamlit as st
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from groq import Groq
|
9 |
+
|
10 |
+
# Load environment variables
|
11 |
+
load_dotenv()
|
12 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
13 |
+
if not groq_api_key:
|
14 |
+
st.error("GROQ_API_KEY is missing. Set it in Railway's environment variables.")
|
15 |
+
st.stop()
|
16 |
+
|
17 |
+
client = Groq(api_key=groq_api_key)
|
18 |
+
|
19 |
+
# Initialize session state for dark mode (default: True)
|
20 |
+
if "dark_mode" not in st.session_state:
|
21 |
+
st.session_state.dark_mode = True
|
22 |
+
|
23 |
+
# Icon switch
|
24 |
+
icon = "🔆" if st.session_state.dark_mode else "🌙"
|
25 |
+
|
26 |
+
# Custom CSS to remove container and position icon in the top-right corner
|
27 |
+
st.markdown(
|
28 |
+
"""
|
29 |
+
<style>
|
30 |
+
.stButton > button {
|
31 |
+
background: none !important;
|
32 |
+
border: none !important;
|
33 |
+
box-shadow: none !important;
|
34 |
+
font-size: 24px !important;
|
35 |
+
position: absolute !important;
|
36 |
+
top: 10px !important;
|
37 |
+
right: 10px !important;
|
38 |
+
cursor: pointer !important;
|
39 |
+
}
|
40 |
+
</style>
|
41 |
+
""",
|
42 |
+
unsafe_allow_html=True,
|
43 |
+
)
|
44 |
+
|
45 |
+
# Toggle button (tap to switch modes)
|
46 |
+
if st.button(icon, key="dark_mode_toggle"):
|
47 |
+
st.session_state.dark_mode = not st.session_state.dark_mode
|
48 |
+
st.rerun()
|
49 |
+
|
50 |
+
# Apply styles for dark & light modes
|
51 |
+
if st.session_state.dark_mode:
|
52 |
+
st.markdown(
|
53 |
+
"""
|
54 |
+
<style>
|
55 |
+
body, .stApp { background-color: #0A192F; color: #E0E5EC; font-family: 'Segoe UI', sans-serif; }
|
56 |
+
h1, h2, h3, p, label { color: white !important; }
|
57 |
+
.stTextInput > div > div > input {
|
58 |
+
background-color: #112240;
|
59 |
+
color: #E0E5EC;
|
60 |
+
border-radius: 8px;
|
61 |
+
padding: 10px;
|
62 |
+
border: 2px solid transparent;
|
63 |
+
box-shadow: 0px 0px 10px rgba(255, 255, 255, 0.2);
|
64 |
+
}
|
65 |
+
</style>
|
66 |
+
""",
|
67 |
+
unsafe_allow_html=True,
|
68 |
+
)
|
69 |
+
else:
|
70 |
+
st.markdown(
|
71 |
+
"""
|
72 |
+
<style>
|
73 |
+
body, .stApp { background-color: #ffffff; color: #333; }
|
74 |
+
h1, h2, h3, p, label { color: #333 !important; }
|
75 |
+
.stTextInput > div > div > input {
|
76 |
+
background-color: #f8f9fa;
|
77 |
+
color: #333;
|
78 |
+
border-radius: 8px;
|
79 |
+
padding: 10px;
|
80 |
+
border: 1px solid #ccc;
|
81 |
+
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
|
82 |
+
}
|
83 |
+
</style>
|
84 |
+
""",
|
85 |
+
unsafe_allow_html=True,
|
86 |
+
)
|
87 |
+
|
88 |
+
# Hide Streamlit UI elements
|
89 |
+
st.markdown(
|
90 |
+
"""
|
91 |
+
<style>
|
92 |
+
#MainMenu {visibility: hidden;}
|
93 |
+
footer {visibility: hidden;}
|
94 |
+
header {visibility: hidden;}
|
95 |
+
</style>
|
96 |
+
""",
|
97 |
+
unsafe_allow_html=True
|
98 |
+
)
|
99 |
+
|
100 |
+
# Load Sentence-Transformer Model (22MB)
|
101 |
+
embedding_model = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L3-v2")
|
102 |
+
|
103 |
+
def get_embeddings(text):
|
104 |
+
"""Fetch embeddings using the local MiniLM model."""
|
105 |
+
return np.array(embedding_model.encode(text))
|
106 |
+
|
107 |
+
def get_stock_info(symbol: str) -> dict:
|
108 |
+
"""Retrieve stock information and description from Yahoo Finance."""
|
109 |
+
try:
|
110 |
+
data = yf.Ticker(symbol)
|
111 |
+
stock_info = data.info
|
112 |
+
description = stock_info.get("longBusinessSummary", "No description available.")
|
113 |
+
return {"symbol": symbol, "description": description}
|
114 |
+
except Exception as e:
|
115 |
+
return {"symbol": symbol, "description": f"Error retrieving stock info: {str(e)}"}
|
116 |
+
|
117 |
+
# Determine embedding size dynamically
|
118 |
+
test_embedding = get_embeddings("Test")
|
119 |
+
d = test_embedding.shape[0]
|
120 |
+
|
121 |
+
# Initialize FAISS index
|
122 |
+
index = faiss.IndexFlatL2(d)
|
123 |
+
stock_metadata = {}
|
124 |
+
|
125 |
+
def store_stock_embeddings(stock_list):
|
126 |
+
"""Store stock embeddings in FAISS index."""
|
127 |
+
global stock_metadata
|
128 |
+
vectors = []
|
129 |
+
metadata = []
|
130 |
+
|
131 |
+
for stock in stock_list:
|
132 |
+
description = stock["description"]
|
133 |
+
symbol = stock["symbol"]
|
134 |
+
embedding = get_embeddings(description)
|
135 |
+
|
136 |
+
if np.any(embedding):
|
137 |
+
vectors.append(embedding)
|
138 |
+
metadata.append({"symbol": symbol, "description": description})
|
139 |
+
|
140 |
+
if vectors:
|
141 |
+
index.add(np.array(vectors))
|
142 |
+
for i, meta in enumerate(metadata):
|
143 |
+
stock_metadata[len(stock_metadata)] = meta
|
144 |
+
|
145 |
+
def find_similar_stocks(query):
|
146 |
+
"""Find similar stocks based on query embedding."""
|
147 |
+
if index.ntotal == 0:
|
148 |
+
return []
|
149 |
+
|
150 |
+
query_embedding = get_embeddings(query).reshape(1, -1)
|
151 |
+
D, I = index.search(query_embedding, k=10)
|
152 |
+
return [stock_metadata[idx] for idx in I[0] if idx in stock_metadata]
|
153 |
+
|
154 |
+
def analyze_stocks(query, stocks):
|
155 |
+
"""Generate stock analysis using Groq's Llama model."""
|
156 |
+
if not stocks:
|
157 |
+
return "No relevant stocks found."
|
158 |
+
|
159 |
+
context = "\n".join([f"Symbol: {s['symbol']}, Description: {s['description']}" for s in stocks])
|
160 |
+
prompt = f"""
|
161 |
+
You are a financial assistant. Analyze the following stocks based on the given query: {query}.
|
162 |
+
|
163 |
+
Stock data:
|
164 |
+
{context}
|
165 |
+
|
166 |
+
Provide insights based on performance, trends, and any notable aspects.
|
167 |
+
"""
|
168 |
+
|
169 |
+
try:
|
170 |
+
response = client.chat.completions.create(
|
171 |
+
model="llama-3.2-11b-vision-preview",
|
172 |
+
messages=[{"role": "user", "content": prompt}]
|
173 |
+
)
|
174 |
+
return response.choices[0].message.content
|
175 |
+
except Exception as e:
|
176 |
+
return f"Error generating analysis: {str(e)}"
|
177 |
+
|
178 |
+
# Load stock data at startup
|
179 |
+
default_stocks = ["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA"]
|
180 |
+
stock_data = [get_stock_info(symbol) for symbol in default_stocks]
|
181 |
+
store_stock_embeddings(stock_data)
|
182 |
+
|
183 |
+
# Streamlit UI
|
184 |
+
st.title('Stock Analysis Dashboard')
|
185 |
+
|
186 |
+
with st.container():
|
187 |
+
query = st.text_input('Ask About Stocks:', '')
|
188 |
+
|
189 |
+
if st.button('Get Stock Info'):
|
190 |
+
stocks = find_similar_stocks(query)
|
191 |
+
analysis = analyze_stocks(query, stocks)
|
192 |
+
|
193 |
+
st.markdown("### Stock Insights:")
|
194 |
+
st.markdown(f"<div class='stMarkdown'>{analysis}</div>", unsafe_allow_html=True)
|
195 |
+
|
196 |
+
st.markdown("---")
|
197 |
+
if not stocks:
|
198 |
+
st.error("No relevant stocks found.")
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
yfinance
|
2 |
+
faiss-cpu
|
3 |
+
groq
|
4 |
+
python-dotenv
|
5 |
+
numpy
|
6 |
+
requests
|
7 |
+
scikit-learn
|
8 |
+
streamlit
|
9 |
+
sentence-transformers
|
10 |
+
asyncio
|