fix upload file errors
Browse filesfix: Not Found
The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again.
main.py
CHANGED
@@ -22,7 +22,7 @@ os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)
|
|
22 |
|
23 |
app = Flask(__name__)
|
24 |
|
25 |
-
# Load Model from Hugging Face
|
26 |
MODEL_NAME = "philipobiorah/bert-imdb-model"
|
27 |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
28 |
model = BertForSequenceClassification.from_pretrained(MODEL_NAME)
|
@@ -31,21 +31,16 @@ model.eval()
|
|
31 |
|
32 |
# Function to Predict Sentiment
|
33 |
def predict_sentiment(text):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
sentiments.append(outputs.logits.argmax(dim=1).item())
|
46 |
-
|
47 |
-
majority_sentiment = Counter(sentiments).most_common(1)[0][0]
|
48 |
-
return 'Positive' if majority_sentiment == 1 else 'Negative'
|
49 |
|
50 |
@app.route('/')
|
51 |
def upload_file():
|
@@ -53,9 +48,56 @@ def upload_file():
|
|
53 |
|
54 |
@app.route('/analyze_text', methods=['POST'])
|
55 |
def analyze_text():
|
56 |
-
text = request.form
|
|
|
|
|
|
|
|
|
57 |
sentiment = predict_sentiment(text)
|
58 |
return render_template('upload.html', sentiment=sentiment)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
if __name__ == '__main__':
|
61 |
app.run(host='0.0.0.0', port=7860, debug=True)
|
|
|
22 |
|
23 |
app = Flask(__name__)
|
24 |
|
25 |
+
# Load Model from Hugging Face
|
26 |
MODEL_NAME = "philipobiorah/bert-imdb-model"
|
27 |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
28 |
model = BertForSequenceClassification.from_pretrained(MODEL_NAME)
|
|
|
31 |
|
32 |
# Function to Predict Sentiment
|
33 |
def predict_sentiment(text):
|
34 |
+
if not text.strip():
|
35 |
+
return "Neutral" # Avoid processing empty text
|
36 |
+
|
37 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
outputs = model(**inputs)
|
41 |
+
|
42 |
+
sentiment = outputs.logits.argmax(dim=1).item()
|
43 |
+
return "Positive" if sentiment == 1 else "Negative"
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
@app.route('/')
|
46 |
def upload_file():
|
|
|
48 |
|
49 |
@app.route('/analyze_text', methods=['POST'])
|
50 |
def analyze_text():
|
51 |
+
text = request.form.get('text', '').strip()
|
52 |
+
|
53 |
+
if not text:
|
54 |
+
return render_template('upload.html', sentiment="Error: No text provided!")
|
55 |
+
|
56 |
sentiment = predict_sentiment(text)
|
57 |
return render_template('upload.html', sentiment=sentiment)
|
58 |
|
59 |
+
@app.route('/uploader', methods=['POST'])
|
60 |
+
def upload_file_post():
|
61 |
+
if 'file' not in request.files:
|
62 |
+
return "Error: No file uploaded!", 400
|
63 |
+
|
64 |
+
f = request.files['file']
|
65 |
+
if f.filename == '':
|
66 |
+
return "Error: No file selected!", 400
|
67 |
+
|
68 |
+
try:
|
69 |
+
data = pd.read_csv(f)
|
70 |
+
|
71 |
+
# Ensure 'review' column exists
|
72 |
+
if 'review' not in data.columns:
|
73 |
+
return "Error: CSV file must contain a 'review' column!", 400
|
74 |
+
|
75 |
+
# Predict sentiment for each review
|
76 |
+
data['sentiment'] = data['review'].astype(str).apply(predict_sentiment)
|
77 |
+
|
78 |
+
# Generate summary
|
79 |
+
sentiment_counts = data['sentiment'].value_counts().to_dict()
|
80 |
+
summary = f"Total Reviews: {len(data)}<br>" \
|
81 |
+
f"Positive: {sentiment_counts.get('Positive', 0)}<br>" \
|
82 |
+
f"Negative: {sentiment_counts.get('Negative', 0)}<br>"
|
83 |
+
|
84 |
+
# Generate sentiment plot
|
85 |
+
fig, ax = plt.subplots()
|
86 |
+
ax.bar(sentiment_counts.keys(), sentiment_counts.values(), color=['red', 'blue'])
|
87 |
+
ax.set_ylabel('Counts')
|
88 |
+
ax.set_title('Sentiment Analysis Summary')
|
89 |
+
|
90 |
+
# Save plot as an image
|
91 |
+
img = BytesIO()
|
92 |
+
plt.savefig(img, format='png', bbox_inches='tight')
|
93 |
+
img.seek(0)
|
94 |
+
plot_url = base64.b64encode(img.getvalue()).decode('utf8')
|
95 |
+
plt.close(fig)
|
96 |
+
|
97 |
+
return render_template('result.html', tables=[data.to_html(classes='data')], titles=data.columns.values, summary=summary, plot_url=plot_url)
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
return f"Error processing file: {str(e)}", 500
|
101 |
+
|
102 |
if __name__ == '__main__':
|
103 |
app.run(host='0.0.0.0', port=7860, debug=True)
|