Spaces:
Paused
Paused
File size: 28,390 Bytes
01115c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
"""
CSM-1B TTS API main application.
Provides an OpenAI-compatible API for the CSM-1B text-to-speech model.
"""
import os
import time
import tempfile
import logging
from logging.handlers import RotatingFileHandler
import traceback
import asyncio
import glob
import torch
import uvicorn
from contextlib import asynccontextmanager
from fastapi import FastAPI, Depends, HTTPException, Request, Response
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from app.api.routes import router as api_router
# Setup logging
os.makedirs("logs", exist_ok=True)
log_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
# Console handler
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(log_format))
# File handler
file_handler = RotatingFileHandler(
"logs/csm_tts_api.log",
maxBytes=10*1024*1024, # 10MB
backupCount=5
)
file_handler.setFormatter(logging.Formatter(log_format))
# Configure root logger
logging.basicConfig(
level=logging.INFO,
format=log_format,
handlers=[console_handler, file_handler]
)
logger = logging.getLogger(__name__)
logger.info("Starting CSM-1B TTS API")
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan manager for startup and shutdown events."""
# STARTUP EVENT
logger.info("Starting application initialization")
app.state.startup_time = time.time()
app.state.generator = None # Will be populated later if model loads
app.state.logger = logger # Make logger available to routes
# Create necessary directories - use persistent locations
os.makedirs("/app/models", exist_ok=True)
os.makedirs("/app/tokenizers", exist_ok=True)
os.makedirs("/app/voice_memories", exist_ok=True)
os.makedirs("/app/voice_references", exist_ok=True)
os.makedirs("/app/voice_profiles", exist_ok=True)
os.makedirs("/app/cloned_voices", exist_ok=True)
os.makedirs("/app/audio_cache", exist_ok=True)
os.makedirs("/app/static", exist_ok=True)
# Set tokenizer cache
try:
os.environ["TRANSFORMERS_CACHE"] = "/app/tokenizers"
logger.info(f"Set tokenizer cache to: {os.environ['TRANSFORMERS_CACHE']}")
except Exception as e:
logger.error(f"Error setting tokenizer cache: {e}")
# Install additional dependencies if needed
try:
import scipy
import soundfile
logger.info("Audio processing dependencies available")
except ImportError as e:
logger.warning(f"Audio processing dependency missing: {e}. Some audio enhancements may not work.")
logger.warning("Consider installing: pip install scipy soundfile")
# Check CUDA availability
cuda_available = torch.cuda.is_available()
if cuda_available:
device_count = torch.cuda.device_count()
device_name = torch.cuda.get_device_name(0) if device_count > 0 else "unknown"
logger.info(f"CUDA is available: {device_count} device(s). Using {device_name}")
# Report CUDA memory
if hasattr(torch.cuda, 'get_device_properties'):
total_memory = torch.cuda.get_device_properties(0).total_memory
logger.info(f"Total CUDA memory: {total_memory / (1024**3):.2f} GB")
else:
logger.warning("CUDA is not available. Using CPU (this will be slow)")
# Determine device and device mapping
device = "cuda" if cuda_available else "cpu"
device_map = os.environ.get("CSM_DEVICE_MAP", None) # Options: "auto", "balanced", "sequential"
if device_map and cuda_available:
if torch.cuda.device_count() > 1:
logger.info(f"Using device mapping strategy: {device_map} across {torch.cuda.device_count()} GPUs")
else:
logger.info("Device mapping requested but only one GPU available, ignoring device_map")
device_map = None
else:
device_map = None
logger.info(f"Using device: {device}")
app.state.device = device
app.state.device_map = device_map
# Check if model file exists
model_path = os.path.join("/app/models", "ckpt.pt")
if not os.path.exists(model_path):
# Try to download at runtime if not present
logger.info("Model not found. Attempting to download...")
try:
from huggingface_hub import hf_hub_download, login
# Check for token in environment
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
logger.info("Logging in to Hugging Face using provided token")
login(token=hf_token)
logger.info("Downloading CSM-1B model from Hugging Face...")
download_start = time.time()
model_path = hf_hub_download(
repo_id="sesame/csm-1b",
filename="ckpt.pt",
local_dir="/app/models"
)
download_time = time.time() - download_start
logger.info(f"Model downloaded to {model_path} in {download_time:.2f} seconds")
except Exception as e:
error_stack = traceback.format_exc()
logger.error(f"Error downloading model: {str(e)}\n{error_stack}")
logger.error("Please build the image with HF_TOKEN to download the model")
logger.error("Starting without model - API will return 503 Service Unavailable")
else:
logger.info(f"Found existing model at {model_path}")
logger.info(f"Model size: {os.path.getsize(model_path) / (1024 * 1024):.2f} MB")
# Load the model
try:
logger.info("Loading CSM-1B model...")
load_start = time.time()
from app.generator import load_csm_1b
app.state.generator = load_csm_1b(model_path, device, device_map)
load_time = time.time() - load_start
logger.info(f"Model loaded successfully in {load_time:.2f} seconds")
# Store sample rate in app state
app.state.sample_rate = app.state.generator.sample_rate
logger.info(f"Model sample rate: {app.state.sample_rate} Hz")
# Initialize voice enhancement system (this will create proper voice profiles)
logger.info("Initializing voice enhancement system...")
try:
from app.voice_enhancement import initialize_voice_profiles, save_voice_profiles
initialize_voice_profiles()
app.state.voice_enhancement_enabled = True
logger.info("Voice profiles initialized successfully")
except Exception as e:
error_stack = traceback.format_exc()
logger.error(f"Error initializing voice profiles: {str(e)}\n{error_stack}")
logger.warning("Voice enhancement features will be limited")
app.state.voice_enhancement_enabled = False
# Initialize voice memory system for consistent generation
logger.info("Initializing voice memory system...")
try:
from app.voice_memory import initialize_voices
initialize_voices(app.state.sample_rate)
app.state.voice_memory_enabled = True
logger.info("Voice memory system initialized")
except Exception as e:
logger.warning(f"Error initializing voice memory: {e}")
app.state.voice_memory_enabled = False
# Initialize voice cloning system
try:
logger.info("Initializing voice cloning system...")
from app.voice_cloning import VoiceCloner, CLONED_VOICES_DIR
# Update the cloned voices directory to use the persistent volume
app.state.cloned_voices_dir = "/app/cloned_voices" # Store path in app state for access
os.makedirs(app.state.cloned_voices_dir, exist_ok=True)
CLONED_VOICES_DIR = app.state.cloned_voices_dir # Update the module constant
# Initialize the voice cloner with proper device
app.state.voice_cloner = VoiceCloner(app.state.generator, device=device)
# Make sure existing voices are loaded
app.state.voice_cloner._load_existing_voices()
# Log the available voices
cloned_voices = app.state.voice_cloner.list_voices()
logger.info(f"Voice cloning system initialized with {len(cloned_voices)} existing voices")
for voice in cloned_voices:
logger.info(f" - {voice.name} (ID: {voice.id}, Speaker ID: {voice.speaker_id})")
# Flag for voice cloning availability
app.state.voice_cloning_enabled = True
except Exception as e:
error_stack = traceback.format_exc()
logger.error(f"Error initializing voice cloning: {e}\n{error_stack}")
logger.warning("Voice cloning features will not be available")
app.state.voice_cloning_enabled = False
# Create prompt templates for consistent generation
logger.info("Setting up prompt engineering templates...")
try:
from app.prompt_engineering import initialize_templates
app.state.prompt_templates = initialize_templates()
logger.info("Prompt templates initialized")
except Exception as e:
error_stack = traceback.format_exc()
logger.error(f"Error initializing prompt templates: {e}\n{error_stack}")
logger.warning("Voice consistency features will be limited")
# Generate voice reference samples (runs in background to avoid blocking startup)
async def generate_samples_async():
try:
logger.info("Starting voice reference generation (background task)...")
from app.voice_enhancement import create_voice_segments
create_voice_segments(app.state)
logger.info("Voice reference generation completed")
except Exception as e:
error_stack = traceback.format_exc()
logger.error(f"Error in voice reference generation: {str(e)}\n{error_stack}")
# Start as a background task
asyncio.create_task(generate_samples_async())
# Initialize voice cache for all voices (standard + cloned)
app.state.voice_cache = {}
# Add standard voices
standard_voices = ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
for voice in standard_voices:
app.state.voice_cache[voice] = []
# Add cloned voices to cache if they exist
if app.state.voice_cloning_enabled and hasattr(app.state, "voice_cloner"):
for voice in app.state.voice_cloner.list_voices():
app.state.voice_cache[voice.id] = []
# Also add by name for more flexible lookup
app.state.voice_cache[voice.name] = []
# Create mapping from voice name/id to speaker_id for easy lookup
app.state.voice_speaker_map = {
"alloy": 0, "echo": 1, "fable": 2, "onyx": 3, "nova": 4, "shimmer": 5
}
# Add cloned voices to the speaker map
if app.state.voice_cloning_enabled and hasattr(app.state, "voice_cloner"):
for voice in app.state.voice_cloner.list_voices():
app.state.voice_speaker_map[voice.id] = voice.speaker_id
app.state.voice_speaker_map[voice.name] = voice.speaker_id
app.state.voice_speaker_map[str(voice.speaker_id)] = voice.speaker_id
# Compile voice information for API
app.state.available_voices = standard_voices.copy()
if app.state.voice_cloning_enabled and hasattr(app.state, "voice_cloner"):
for voice in app.state.voice_cloner.list_voices():
app.state.available_voices.append(voice.id)
app.state.available_voices.append(voice.name)
# Store model information for API endpoints
app.state.model_info = {
"name": "CSM-1B",
"device": device,
"device_map": device_map,
"sample_rate": app.state.sample_rate,
"standard_voices": standard_voices,
"cloned_voices": [v.id for v in app.state.voice_cloner.list_voices()] if app.state.voice_cloning_enabled else [],
"voice_enhancement_enabled": app.state.voice_enhancement_enabled,
"voice_memory_enabled": app.state.voice_memory_enabled,
"voice_cloning_enabled": app.state.voice_cloning_enabled,
"streaming_enabled": True
}
# Create a function to access all voices in a standardized format
def get_all_available_voices():
"""Helper function to get all available voices for API endpoints"""
# Standard voices with fixed descriptions
all_voices = [
{"voice_id": "alloy", "name": "Alloy", "description": "Balanced and natural"},
{"voice_id": "echo", "name": "Echo", "description": "Resonant and deeper"},
{"voice_id": "fable", "name": "Fable", "description": "Bright and higher-pitched"},
{"voice_id": "onyx", "name": "Onyx", "description": "Deep and authoritative"},
{"voice_id": "nova", "name": "Nova", "description": "Warm and smooth"},
{"voice_id": "shimmer", "name": "Shimmer", "description": "Light and airy"}
]
# Add cloned voices if available
if app.state.voice_cloning_enabled and hasattr(app.state, "voice_cloner"):
for voice in app.state.voice_cloner.list_voices():
all_voices.append({
"voice_id": voice.id,
"name": voice.name,
"description": voice.description or f"Cloned voice: {voice.name}"
})
return all_voices
app.state.get_all_voices = get_all_available_voices
# Add helper function to lookup voice info
def get_voice_info(voice_identifier):
"""Look up voice information based on name, ID, or speaker_id"""
# Check standard voices
if voice_identifier in standard_voices:
return {
"type": "standard",
"voice_id": voice_identifier,
"name": voice_identifier,
"speaker_id": standard_voices.index(voice_identifier)
}
# Look for cloned voice
if not app.state.voice_cloning_enabled or not hasattr(app.state, "voice_cloner"):
return None
# Check by ID
if voice_identifier in app.state.voice_cloner.cloned_voices:
voice = app.state.voice_cloner.cloned_voices[voice_identifier]
return {
"type": "cloned",
"voice_id": voice.id,
"name": voice.name,
"speaker_id": voice.speaker_id
}
# Check by name
for v_id, voice in app.state.voice_cloner.cloned_voices.items():
if voice.name == voice_identifier:
return {
"type": "cloned",
"voice_id": voice.id,
"name": voice.name,
"speaker_id": voice.speaker_id
}
# Check by speaker_id (string representation)
try:
speaker_id = int(voice_identifier)
# Check if any cloned voice has this speaker_id
for v_id, voice in app.state.voice_cloner.cloned_voices.items():
if voice.speaker_id == speaker_id:
return {
"type": "cloned",
"voice_id": voice.id,
"name": voice.name,
"speaker_id": speaker_id
}
except (ValueError, TypeError):
pass
# No match found
return None
app.state.get_voice_info = get_voice_info
# Set up audio cache
app.state.audio_cache_enabled = os.environ.get("ENABLE_AUDIO_CACHE", "true").lower() == "true"
if app.state.audio_cache_enabled:
app.state.audio_cache_dir = "/app/audio_cache"
logger.info(f"Audio cache enabled, cache dir: {app.state.audio_cache_dir}")
# Log GPU utilization after model loading
if cuda_available:
memory_allocated = torch.cuda.memory_allocated() / (1024**3)
memory_reserved = torch.cuda.memory_reserved() / (1024**3)
logger.info(f"GPU memory: {memory_allocated:.2f} GB allocated, {memory_reserved:.2f} GB reserved")
if torch.cuda.device_count() > 1 and device_map:
logger.info("Multi-GPU setup active with the following memory usage:")
for i in range(torch.cuda.device_count()):
memory_allocated = torch.cuda.memory_allocated(i) / (1024**3)
memory_reserved = torch.cuda.memory_reserved(i) / (1024**3)
logger.info(f"GPU {i}: {memory_allocated:.2f} GB allocated, {memory_reserved:.2f} GB reserved")
# Set up scheduled tasks
try:
# Create a background task for periodic voice profile backup
async def periodic_voice_profile_backup(interval_hours=6):
"""Periodically save voice profiles to persistent storage."""
while True:
try:
# Wait for the specified interval
await asyncio.sleep(interval_hours * 3600)
# Log the backup
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
logger.info(f"Scheduled voice profile backup started at {timestamp}")
# Save voice profiles
if hasattr(app.state, "voice_enhancement_enabled") and app.state.voice_enhancement_enabled:
from app.voice_enhancement import save_voice_profiles
save_voice_profiles()
logger.info("Voice profiles saved successfully")
# Save voice memories
if hasattr(app.state, "voice_memory_enabled") and app.state.voice_memory_enabled:
from app.voice_memory import VOICE_MEMORIES
for voice_name, memory in VOICE_MEMORIES.items():
memory.save()
logger.info("Voice memories saved successfully")
except Exception as e:
logger.error(f"Error in periodic voice profile backup: {e}")
# Start the scheduled task
asyncio.create_task(periodic_voice_profile_backup(interval_hours=6))
logger.info("Started scheduled voice profile backup task")
except Exception as e:
logger.warning(f"Failed to set up scheduled tasks: {e}")
logger.info(f"CSM-1B TTS API is ready on {device} with sample rate {app.state.sample_rate}")
logger.info(f"Standard voices: {standard_voices}")
cloned_count = len(app.state.voice_cloner.list_voices()) if app.state.voice_cloning_enabled else 0
logger.info(f"Cloned voices: {cloned_count}")
except Exception as e:
error_stack = traceback.format_exc()
logger.error(f"Error loading model: {str(e)}\n{error_stack}")
app.state.generator = None
# Calculate total startup time
startup_time = time.time() - app.state.startup_time
logger.info(f"Application startup completed in {startup_time:.2f} seconds")
yield # This is where the application runs
# SHUTDOWN EVENT
logger.info("Application shutdown initiated")
# Clean up model resources
if hasattr(app.state, "generator") and app.state.generator is not None:
try:
# Clean up CUDA memory if available
if torch.cuda.is_available():
logger.info("Clearing CUDA cache")
torch.cuda.empty_cache()
torch.cuda.synchronize()
except Exception as e:
logger.error(f"Error during CUDA cleanup: {e}")
# Save voice profiles if they've been updated
try:
if hasattr(app.state, "voice_enhancement_enabled") and app.state.voice_enhancement_enabled:
from app.voice_enhancement import save_voice_profiles
logger.info("Saving voice profiles...")
save_voice_profiles()
logger.info("Voice profiles saved successfully")
except Exception as e:
logger.error(f"Error saving voice profiles: {e}")
# Save voice memories if they've been updated
try:
if hasattr(app.state, "voice_memory_enabled") and app.state.voice_memory_enabled:
from app.voice_memory import VOICE_MEMORIES
logger.info("Saving voice memories...")
for voice_name, memory in VOICE_MEMORIES.items():
memory.save()
logger.info("Voice memories saved successfully")
except Exception as e:
logger.error(f"Error saving voice memories: {e}")
# Clean up any temporary files
try:
for temp_file in glob.glob(os.path.join(tempfile.gettempdir(), "csm_tts_*")):
try:
os.remove(temp_file)
logger.info(f"Removed temporary file: {temp_file}")
except:
pass
except Exception as e:
logger.warning(f"Error cleaning up temporary files: {e}")
logger.info("Application shutdown complete")
# Initialize FastAPI app
app = FastAPI(
title="CSM-1B TTS API",
description="OpenAI-compatible TTS API using the CSM-1B model from Sesame",
version="1.0.0",
lifespan=lifespan
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create static and other required directories
os.makedirs("/app/static", exist_ok=True)
os.makedirs("/app/cloned_voices", exist_ok=True)
# Mount the static files directory
app.mount("/static", StaticFiles(directory="/app/static"), name="static")
# Include routers
app.include_router(api_router, prefix="/api/v1")
# Add OpenAI compatible route
app.include_router(api_router, prefix="/v1")
# Add voice cloning routes
from app.api.voice_cloning_routes import router as voice_cloning_router
app.include_router(voice_cloning_router, prefix="/api/v1")
app.include_router(voice_cloning_router, prefix="/v1")
# Add streaming routes
from app.api.streaming import router as streaming_router
app.include_router(streaming_router, prefix="/api/v1")
app.include_router(streaming_router, prefix="/v1")
# Middleware for request timing
@app.middleware("http")
async def add_process_time_header(request: Request, call_next):
"""Middleware to track request processing time."""
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
response.headers["X-Process-Time"] = str(process_time)
logger.debug(f"Request to {request.url.path} processed in {process_time:.3f} seconds")
return response
# Health check endpoint
@app.get("/health", include_in_schema=False)
async def health_check(request: Request):
"""Health check endpoint that returns the status of the API."""
model_status = "healthy" if hasattr(request.app.state, "generator") and request.app.state.generator is not None else "unhealthy"
uptime = time.time() - getattr(request.app.state, "startup_time", time.time())
# Get voice information
standard_voices = ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
cloned_voices = []
if hasattr(request.app.state, "voice_cloner") and request.app.state.voice_cloner is not None:
cloned_voices = [
{"id": v.id, "name": v.name, "speaker_id": v.speaker_id}
for v in request.app.state.voice_cloner.list_voices()
]
# Get CUDA memory stats if available
cuda_stats = None
if torch.cuda.is_available():
cuda_stats = {
"allocated_gb": torch.cuda.memory_allocated() / (1024**3),
"reserved_gb": torch.cuda.memory_reserved() / (1024**3)
}
return {
"status": model_status,
"uptime": f"{uptime:.2f} seconds",
"device": getattr(request.app.state, "device", "unknown"),
"model": "CSM-1B",
"standard_voices": standard_voices,
"cloned_voices": cloned_voices,
"cloned_voices_count": len(cloned_voices),
"sample_rate": getattr(request.app.state, "sample_rate", 0),
"enhancements": "enabled" if hasattr(request.app.state, "model_info") and
request.app.state.model_info.get("voice_enhancement_enabled", False) else "disabled",
"streaming": "enabled",
"cuda": cuda_stats,
"version": "1.0.0"
}
# Version endpoint
@app.get("/version", include_in_schema=False)
async def version():
"""Version endpoint that returns API version information."""
return {
"api_version": "1.0.0",
"model_version": "CSM-1B",
"compatible_with": "OpenAI TTS v1",
"enhancements": "voice consistency and audio quality v1.0",
"voice_cloning": "enabled" if hasattr(app.state, "voice_cloner") else "disabled",
"streaming": "enabled"
}
# Voice cloning UI endpoint
@app.get("/voice-cloning", include_in_schema=False)
async def voice_cloning_ui():
"""Voice cloning UI endpoint."""
return FileResponse("/app/static/voice-cloning.html")
# Streaming demo endpoint
@app.get("/streaming-demo", include_in_schema=False)
async def streaming_demo():
"""Streaming TTS demo endpoint."""
return FileResponse("/app/static/streaming-demo.html")
@app.get("/", include_in_schema=False)
async def root():
"""Root endpoint that redirects to docs."""
logger.debug("Root endpoint accessed, redirecting to docs")
return RedirectResponse(url="/docs")
if __name__ == "__main__":
# Get port from environment or use default
port = int(os.environ.get("PORT", 8000))
# Development mode flag
dev_mode = os.environ.get("DEV_MODE", "false").lower() == "true"
# Log level (default to INFO, but can be overridden)
log_level = os.environ.get("LOG_LEVEL", "INFO").upper()
logging.getLogger().setLevel(log_level)
# Check for audio enhancement and voice cloning flags
enable_enhancements = os.environ.get("ENABLE_ENHANCEMENTS", "true").lower() == "true"
enable_voice_cloning = os.environ.get("ENABLE_VOICE_CLONING", "true").lower() == "true"
if not enable_enhancements:
logger.warning("Voice enhancements disabled by environment variable")
if not enable_voice_cloning:
logger.warning("Voice cloning disabled by environment variable")
logger.info(f"Voice enhancements: {'enabled' if enable_enhancements else 'disabled'}")
logger.info(f"Voice cloning: {'enabled' if enable_voice_cloning else 'disabled'}")
logger.info(f"Streaming: enabled")
logger.info(f"Log level: {log_level}")
if dev_mode:
logger.info(f"Running in development mode with auto-reload enabled on port {port}")
uvicorn.run(
"app.main:app",
host="0.0.0.0",
port=port,
reload=True,
log_level=log_level.lower()
)
else:
logger.info(f"Running in production mode on port {port}")
uvicorn.run(
"app.main:app",
host="0.0.0.0",
port=port,
reload=False,
log_level=log_level.lower()
) |