Spaces:
Running
Running
Commit
·
5137985
1
Parent(s):
2ed5230
progress more 59
Browse files
app.py
CHANGED
@@ -22,6 +22,43 @@ from huggingface_hub import login
|
|
22 |
from accelerate import init_empty_weights
|
23 |
import logging
|
24 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
logging.basicConfig(level=logging.INFO)
|
27 |
logger = logging.getLogger(__name__)
|
@@ -69,62 +106,24 @@ def load_model(model_id):
|
|
69 |
|
70 |
|
71 |
def init_langchain_llm():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
tokenizer, model = load_model(model_id)
|
79 |
-
|
80 |
-
except Exception as e:
|
81 |
-
logger.error(f"Error loading model: {str(e)}", exc_info=True)
|
82 |
-
st.error(f"Failed to load model: {str(e)}")
|
83 |
-
st.stop()
|
84 |
-
|
85 |
-
# Authenticate using the token from Streamlit secrets
|
86 |
-
if 'hf_token' in st.secrets:
|
87 |
-
login(token=st.secrets['hf_token'])
|
88 |
-
else:
|
89 |
-
st.error("Hugging Face token not found in Streamlit secrets. Please add it to access the model.")
|
90 |
-
st.stop()
|
91 |
-
|
92 |
-
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
93 |
-
|
94 |
-
try:
|
95 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
96 |
-
|
97 |
-
# Use Accelerate for efficient model loading
|
98 |
-
with init_empty_weights():
|
99 |
-
config = transformers.AutoConfig.from_pretrained(model_id)
|
100 |
-
model = transformers.AutoModelForCausalLM.from_config(config)
|
101 |
-
|
102 |
-
model = model.from_pretrained(
|
103 |
-
model_id,
|
104 |
-
torch_dtype=torch.float16,
|
105 |
-
device_map="auto",
|
106 |
-
low_cpu_mem_usage=True
|
107 |
-
)
|
108 |
-
|
109 |
-
pipeline = transformers.pipeline(
|
110 |
-
"text-generation",
|
111 |
-
model=model,
|
112 |
-
tokenizer=tokenizer,
|
113 |
-
torch_dtype=torch.float16,
|
114 |
-
device_map="auto",
|
115 |
-
)
|
116 |
-
|
117 |
-
def llama_wrapper(prompt):
|
118 |
-
result = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
|
119 |
-
return result[0]['generated_text']
|
120 |
-
|
121 |
-
llm = HuggingFacePipeline(pipeline=llama_wrapper)
|
122 |
-
return llm
|
123 |
-
|
124 |
-
except Exception as e:
|
125 |
-
logger.error(f"Error loading model: {str(e)}", exc_info=True)
|
126 |
-
st.error(f"Failed to load model: {str(e)}")
|
127 |
-
st.stop()
|
128 |
|
129 |
|
130 |
def estimate_impact(llm, news_text, entity):
|
@@ -395,6 +394,8 @@ def process_file(uploaded_file):
|
|
395 |
progress_bar = st.progress(0)
|
396 |
progress_text = st.empty()
|
397 |
total_news = len(df)
|
|
|
|
|
398 |
|
399 |
texts = df['Выдержки из текста'].tolist()
|
400 |
# Data validation
|
@@ -403,12 +404,16 @@ def process_file(uploaded_file):
|
|
403 |
for text in df['Выдержки из текста']:
|
404 |
lemmatized_texts.append(lemmatize_text(text))
|
405 |
|
406 |
-
for i, text in enumerate(lemmatized_texts):
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
|
|
|
|
|
|
|
|
|
412 |
# Perform sentiment analysis
|
413 |
rubert2_results = [get_rubert2_sentiment(text) for text in texts]
|
414 |
finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
|
@@ -499,7 +504,7 @@ def create_output_file(df, uploaded_file, analysis_df):
|
|
499 |
return output
|
500 |
|
501 |
def main():
|
502 |
-
st.title("... приступим к анализу... версия
|
503 |
|
504 |
# Initialize session state
|
505 |
if 'processed_df' not in st.session_state:
|
|
|
22 |
from accelerate import init_empty_weights
|
23 |
import logging
|
24 |
import os
|
25 |
+
from transformers import MarianMTModel, MarianTokenizer
|
26 |
+
|
27 |
+
class TranslationModel:
|
28 |
+
def __init__(self, model_name="Helsinki-NLP/opus-mt-ru-en"):
|
29 |
+
self.tokenizer = MarianTokenizer.from_pretrained(model_name)
|
30 |
+
self.model = MarianMTModel.from_pretrained(model_name)
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
self.model = self.model.to('cuda')
|
33 |
+
|
34 |
+
def translate(self, text):
|
35 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
36 |
+
if torch.cuda.is_available():
|
37 |
+
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
translated = self.model.generate(**inputs)
|
41 |
+
|
42 |
+
return self.tokenizer.decode(translated[0], skip_special_tokens=True)
|
43 |
+
|
44 |
+
|
45 |
+
def batch_translate(texts, batch_size=32):
|
46 |
+
translator = TranslationModel()
|
47 |
+
translated_texts = []
|
48 |
+
|
49 |
+
for i in range(0, len(texts), batch_size):
|
50 |
+
batch = texts[i:i+batch_size]
|
51 |
+
translations = [translator.translate(text) for text in batch]
|
52 |
+
translated_texts.extend(translations)
|
53 |
+
|
54 |
+
# Update progress
|
55 |
+
progress = (i + len(batch)) / len(texts)
|
56 |
+
st.progress(progress)
|
57 |
+
st.text(f"Переведено {i + len(batch)} из {len(texts)} текстов")
|
58 |
+
|
59 |
+
return translated_texts
|
60 |
+
|
61 |
+
|
62 |
|
63 |
logging.basicConfig(level=logging.INFO)
|
64 |
logger = logging.getLogger(__name__)
|
|
|
106 |
|
107 |
|
108 |
def init_langchain_llm():
|
109 |
+
model_id = "gpt2" # Using the publicly available GPT-2 model
|
110 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
111 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(model_id)
|
112 |
+
|
113 |
+
pipeline = transformers.pipeline(
|
114 |
+
"text-generation",
|
115 |
+
model=model,
|
116 |
+
tokenizer=tokenizer,
|
117 |
+
torch_dtype=torch.float32,
|
118 |
+
device_map="auto",
|
119 |
+
)
|
120 |
|
121 |
+
def gpt2_wrapper(prompt):
|
122 |
+
result = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
|
123 |
+
return result[0]['generated_text']
|
124 |
|
125 |
+
llm = HuggingFacePipeline(pipeline=gpt2_wrapper)
|
126 |
+
return llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
|
129 |
def estimate_impact(llm, news_text, entity):
|
|
|
394 |
progress_bar = st.progress(0)
|
395 |
progress_text = st.empty()
|
396 |
total_news = len(df)
|
397 |
+
|
398 |
+
st.write("Начинаем предобработку текстов...")
|
399 |
|
400 |
texts = df['Выдержки из текста'].tolist()
|
401 |
# Data validation
|
|
|
404 |
for text in df['Выдержки из текста']:
|
405 |
lemmatized_texts.append(lemmatize_text(text))
|
406 |
|
407 |
+
#for i, text in enumerate(lemmatized_texts):
|
408 |
+
# translated_text = translate(str(text))
|
409 |
+
# translated_texts.append(translated_text)
|
410 |
+
# progress_bar.progress((i + 1) / len(df))
|
411 |
+
# progress_text.text(f"{i + 1} из {total_news} сообщений предобработано")
|
412 |
|
413 |
+
translated_texts = batch_translate(lemmatized_texts)
|
414 |
+
df['Translated'] = translated_texts
|
415 |
+
|
416 |
+
|
417 |
# Perform sentiment analysis
|
418 |
rubert2_results = [get_rubert2_sentiment(text) for text in texts]
|
419 |
finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
|
|
|
504 |
return output
|
505 |
|
506 |
def main():
|
507 |
+
st.title("... приступим к анализу... версия 59")
|
508 |
|
509 |
# Initialize session state
|
510 |
if 'processed_df' not in st.session_state:
|