|
import random |
|
import torch |
|
from transformers import BertTokenizer, BertForMaskedLM |
|
from nltk.corpus import stopwords |
|
import nltk |
|
|
|
|
|
try: |
|
nltk.data.find('corpora/stopwords') |
|
except LookupError: |
|
nltk.download('stopwords') |
|
|
|
class MaskingProcessor: |
|
def __init__(self): |
|
|
|
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
self.model = BertForMaskedLM.from_pretrained("bert-base-uncased") |
|
self.stop_words = set(stopwords.words('english')) |
|
|
|
def remove_stopwords(self, words): |
|
""" |
|
Remove stopwords from the given list of words. |
|
|
|
Args: |
|
words (list): List of words. |
|
|
|
Returns: |
|
list: List of non-stop words. |
|
""" |
|
return [word for word in words if word.lower() not in self.stop_words] |
|
|
|
def adjust_ngram_indices(self, original_words, common_ngrams): |
|
""" |
|
Adjust indices of common n-grams after removing stopwords. |
|
|
|
Args: |
|
original_words (list): Original list of words. |
|
common_ngrams (dict): Common n-grams and their indices. |
|
|
|
Returns: |
|
dict: Adjusted common n-grams with updated indices. |
|
""" |
|
non_stop_words = self.remove_stopwords(original_words) |
|
original_to_non_stop = [] |
|
non_stop_idx = 0 |
|
|
|
for original_idx, word in enumerate(original_words): |
|
if word.lower() not in self.stop_words: |
|
original_to_non_stop.append((original_idx, non_stop_idx)) |
|
non_stop_idx += 1 |
|
|
|
adjusted_ngrams = {} |
|
for ngram, positions in common_ngrams.items(): |
|
adjusted_positions = [] |
|
for start, end in positions: |
|
try: |
|
new_start = next(non_stop for orig, non_stop in original_to_non_stop if orig == start) |
|
new_end = next(non_stop for orig, non_stop in original_to_non_stop if orig == end) |
|
adjusted_positions.append((new_start, new_end)) |
|
except StopIteration: |
|
continue |
|
adjusted_ngrams[ngram] = adjusted_positions |
|
|
|
return adjusted_ngrams |
|
|
|
def mask_sentence_random(self, sentence, common_ngrams): |
|
""" |
|
Mask words in the sentence based on the specified rules after removing stopwords. |
|
""" |
|
original_words = sentence.split() |
|
print(f' ---- original_words : {original_words} ----- ') |
|
non_stop_words = self.remove_stopwords(original_words) |
|
print(f' ---- non_stop_words : {non_stop_words} ----- ') |
|
adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams) |
|
print(f' ---- common_ngrams : {common_ngrams} ----- ') |
|
print(f' ---- adjusted_ngrams : {adjusted_ngrams} ----- ') |
|
|
|
mask_indices = [] |
|
|
|
|
|
ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions] |
|
|
|
|
|
if ngram_positions: |
|
print(f' ---- ngram_positions : {ngram_positions} ----- ') |
|
first_ngram_start = ngram_positions[0][0] |
|
print(f' ---- first_ngram_start : {first_ngram_start} ----- ') |
|
if first_ngram_start > 0: |
|
mask_index_before_ngram = random.randint(0, first_ngram_start-1) |
|
print(f' ---- mask_index_before_ngram : {mask_index_before_ngram} ----- ') |
|
mask_indices.append(mask_index_before_ngram) |
|
|
|
|
|
for i in range(len(ngram_positions) - 1): |
|
end_prev = ngram_positions[i][1] |
|
print(f' ---- end_prev : {end_prev} ----- ') |
|
start_next = ngram_positions[i + 1][0] |
|
print(f' ---- start_next : {start_next} ----- ') |
|
if start_next > end_prev + 1: |
|
mask_index_between_ngrams = random.randint(end_prev + 1, start_next - 1) |
|
print(f' ---- mask_index_between_ngrams : {mask_index_between_ngrams} ----- ') |
|
mask_indices.append(mask_index_between_ngrams) |
|
|
|
|
|
last_ngram_end = ngram_positions[-1][1] |
|
if last_ngram_end < len(non_stop_words) - 1: |
|
print(f' ---- last_ngram_end : {last_ngram_end} ----- ') |
|
mask_index_after_ngram = random.randint(last_ngram_end + 1, len(non_stop_words) - 1) |
|
print(f' ---- mask_index_after_ngram : {mask_index_after_ngram} ----- ') |
|
mask_indices.append(mask_index_after_ngram) |
|
|
|
|
|
non_stop_to_original = {} |
|
non_stop_idx = 0 |
|
for orig_idx, word in enumerate(original_words): |
|
if word.lower() not in self.stop_words: |
|
non_stop_to_original[non_stop_idx] = orig_idx |
|
non_stop_idx += 1 |
|
|
|
|
|
print(f' ---- non_stop_to_original : {non_stop_to_original} ----- ') |
|
original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices] |
|
print(f' ---- original_mask_indices : {original_mask_indices} ----- ') |
|
|
|
|
|
masked_words = original_words.copy() |
|
for idx in original_mask_indices: |
|
masked_words[idx] = self.tokenizer.mask_token |
|
|
|
return " ".join(masked_words) |
|
|
|
def mask_sentence_pseudorandom(self, sentence, common_ngrams): |
|
""" |
|
Mask words in the sentence based on the specified rules after removing stopwords. |
|
""" |
|
random.seed(42) |
|
original_words = sentence.split() |
|
print(f' ---- original_words : {original_words} ----- ') |
|
non_stop_words = self.remove_stopwords(original_words) |
|
print(f' ---- non_stop_words : {non_stop_words} ----- ') |
|
adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams) |
|
print(f' ---- common_ngrams : {common_ngrams} ----- ') |
|
print(f' ---- adjusted_ngrams : {adjusted_ngrams} ----- ') |
|
|
|
mask_indices = [] |
|
|
|
|
|
ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions] |
|
|
|
|
|
if ngram_positions: |
|
print(f' ---- ngram_positions : {ngram_positions} ----- ') |
|
first_ngram_start = ngram_positions[0][0] |
|
print(f' ---- first_ngram_start : {first_ngram_start} ----- ') |
|
if first_ngram_start > 0: |
|
mask_index_before_ngram = random.randint(0, first_ngram_start-1) |
|
print(f' ---- mask_index_before_ngram : {mask_index_before_ngram} ----- ') |
|
mask_indices.append(mask_index_before_ngram) |
|
|
|
|
|
for i in range(len(ngram_positions) - 1): |
|
end_prev = ngram_positions[i][1] |
|
print(f' ---- end_prev : {end_prev} ----- ') |
|
start_next = ngram_positions[i + 1][0] |
|
print(f' ---- start_next : {start_next} ----- ') |
|
if start_next > end_prev + 1: |
|
mask_index_between_ngrams = random.randint(end_prev + 1, start_next - 1) |
|
print(f' ---- mask_index_between_ngrams : {mask_index_between_ngrams} ----- ') |
|
mask_indices.append(mask_index_between_ngrams) |
|
|
|
|
|
last_ngram_end = ngram_positions[-1][1] |
|
if last_ngram_end < len(non_stop_words) - 1: |
|
print(f' ---- last_ngram_end : {last_ngram_end} ----- ') |
|
mask_index_after_ngram = random.randint(last_ngram_end + 1, len(non_stop_words) - 1) |
|
print(f' ---- mask_index_after_ngram : {mask_index_after_ngram} ----- ') |
|
mask_indices.append(mask_index_after_ngram) |
|
|
|
|
|
non_stop_to_original = {} |
|
non_stop_idx = 0 |
|
for orig_idx, word in enumerate(original_words): |
|
if word.lower() not in self.stop_words: |
|
non_stop_to_original[non_stop_idx] = orig_idx |
|
non_stop_idx += 1 |
|
|
|
|
|
print(f' ---- non_stop_to_original : {non_stop_to_original} ----- ') |
|
original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices] |
|
print(f' ---- original_mask_indices : {original_mask_indices} ----- ') |
|
|
|
|
|
masked_words = original_words.copy() |
|
for idx in original_mask_indices: |
|
masked_words[idx] = self.tokenizer.mask_token |
|
|
|
return " ".join(masked_words) |
|
|
|
|
|
def calculate_word_entropy(self, sentence, word_position): |
|
""" |
|
Calculate entropy for a specific word position in the sentence. |
|
|
|
Args: |
|
sentence (str): The input sentence |
|
word_position (int): Position of the word to calculate entropy for |
|
|
|
Returns: |
|
float: Entropy value for the word |
|
""" |
|
words = sentence.split() |
|
masked_words = words.copy() |
|
masked_words[word_position] = self.tokenizer.mask_token |
|
masked_sentence = " ".join(masked_words) |
|
|
|
input_ids = self.tokenizer(masked_sentence, return_tensors="pt")["input_ids"] |
|
mask_token_index = torch.where(input_ids == self.tokenizer.mask_token_id)[1] |
|
|
|
with torch.no_grad(): |
|
outputs = self.model(input_ids) |
|
logits = outputs.logits |
|
|
|
|
|
probs = torch.nn.functional.softmax(logits[0, mask_token_index], dim=-1) |
|
|
|
entropy = -torch.sum(probs * torch.log(probs + 1e-9)) |
|
|
|
return entropy.item() |
|
|
|
def mask_sentence_entropy(self, sentence, common_ngrams): |
|
""" |
|
Mask words in the sentence based on entropy, following n-gram positioning rules. |
|
|
|
Args: |
|
sentence (str): Original sentence |
|
common_ngrams (dict): Common n-grams and their indices |
|
|
|
Returns: |
|
str: Masked sentence |
|
""" |
|
original_words = sentence.split() |
|
non_stop_words = self.remove_stopwords(original_words) |
|
adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams) |
|
|
|
|
|
non_stop_to_original = {} |
|
original_to_non_stop = {} |
|
non_stop_idx = 0 |
|
for orig_idx, word in enumerate(original_words): |
|
if word.lower() not in self.stop_words: |
|
non_stop_to_original[non_stop_idx] = orig_idx |
|
original_to_non_stop[orig_idx] = non_stop_idx |
|
non_stop_idx += 1 |
|
|
|
ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions] |
|
mask_indices = [] |
|
|
|
if ngram_positions: |
|
|
|
first_ngram_start = ngram_positions[0][0] |
|
if first_ngram_start > 0: |
|
|
|
candidate_positions = range(0, first_ngram_start) |
|
entropies = [(pos, self.calculate_word_entropy(sentence, non_stop_to_original[pos])) |
|
for pos in candidate_positions] |
|
|
|
mask_indices.append(max(entropies, key=lambda x: x[1])[0]) |
|
|
|
|
|
for i in range(len(ngram_positions) - 1): |
|
end_prev = ngram_positions[i][1] |
|
start_next = ngram_positions[i + 1][0] |
|
if start_next > end_prev + 1: |
|
candidate_positions = range(end_prev + 1, start_next) |
|
entropies = [(pos, self.calculate_word_entropy(sentence, non_stop_to_original[pos])) |
|
for pos in candidate_positions] |
|
mask_indices.append(max(entropies, key=lambda x: x[1])[0]) |
|
|
|
|
|
last_ngram_end = ngram_positions[-1][1] |
|
if last_ngram_end < len(non_stop_words) - 1: |
|
candidate_positions = range(last_ngram_end + 1, len(non_stop_words)) |
|
entropies = [(pos, self.calculate_word_entropy(sentence, non_stop_to_original[pos])) |
|
for pos in candidate_positions] |
|
mask_indices.append(max(entropies, key=lambda x: x[1])[0]) |
|
|
|
|
|
original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices] |
|
masked_words = original_words.copy() |
|
for idx in original_mask_indices: |
|
masked_words[idx] = self.tokenizer.mask_token |
|
|
|
return " ".join(masked_words) |
|
|
|
|
|
def calculate_mask_logits(self, masked_sentence): |
|
""" |
|
Calculate logits for masked tokens in the sentence using BERT. |
|
|
|
Args: |
|
masked_sentence (str): Sentence with [MASK] tokens. |
|
|
|
Returns: |
|
dict: Masked token indices and their logits. |
|
""" |
|
input_ids = self.tokenizer(masked_sentence, return_tensors="pt")["input_ids"] |
|
mask_token_index = torch.where(input_ids == self.tokenizer.mask_token_id)[1] |
|
|
|
with torch.no_grad(): |
|
outputs = self.model(input_ids) |
|
logits = outputs.logits |
|
|
|
mask_logits = {idx.item(): logits[0, idx].tolist() for idx in mask_token_index} |
|
return mask_logits |
|
|
|
def process_sentences(self, sentences, result_dict, method="random"): |
|
""" |
|
Process sentences and calculate logits for masked tokens. |
|
|
|
Args: |
|
sentences (list): List of sentences |
|
result_dict (dict): Dictionary of common n-grams |
|
method (str): Masking method ("random" or "entropy") |
|
|
|
Returns: |
|
dict: Masked sentences and logits for each sentence |
|
""" |
|
results = {} |
|
|
|
for sentence, ngrams in result_dict.items(): |
|
if method == "random": |
|
masked_sentence = self.mask_sentence_random(sentence, ngrams) |
|
elif method == "pseudorandom": |
|
masked_sentence = self.mask_sentence_pseudorandom(sentence, ngrams) |
|
else: |
|
masked_sentence = self.mask_sentence_entropy(sentence, ngrams) |
|
|
|
logits = self.calculate_mask_logits(masked_sentence) |
|
results[sentence] = { |
|
"masked_sentence": masked_sentence, |
|
"mask_logits": logits |
|
} |
|
|
|
return results |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
sentences = [ |
|
"The quick brown fox jumps over the lazy dog everyday.", |
|
|
|
|
|
] |
|
result_dict ={ |
|
'The quick brown fox jumps over the lazy dog everyday.': {'brown fox': [(2, 3)], 'dog': [(8, 8)]}, |
|
|
|
|
|
} |
|
|
|
|
|
processor = MaskingProcessor() |
|
|
|
results_entropy = processor.process_sentences(sentences, result_dict, method="random") |
|
|
|
|
|
|
|
for sentence, output in results_entropy.items(): |
|
print(f"Original Sentence (Random): {sentence}") |
|
print(f"Masked Sentence (Random): {output['masked_sentence']}") |
|
|
|
print(f' type(output["mask_logits"]) : {type(output["mask_logits"])}') |
|
print(f' length of output["mask_logits"] : {len(output["mask_logits"])}') |
|
print(f' output["mask_logits"].keys() : {output["mask_logits"].keys()}') |
|
print('--------------------------------') |
|
for mask_idx, logits in output["mask_logits"].items(): |
|
print(f"Logits for [MASK] at position {mask_idx}:") |
|
print(f' logits : {logits[:5]}') |
|
print(f' len(logits) : {len(logits)}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|