File size: 27,277 Bytes
060ac52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import random
import torch
from transformers import BertTokenizer, BertForMaskedLM
from nltk.corpus import stopwords
import nltk
from transformers import RobertaTokenizer, RobertaForMaskedLM


# Ensure stopwords are downloaded
try:
    nltk.data.find('corpora/stopwords')
except LookupError:
    nltk.download('stopwords')

class MaskingProcessor:
    # def __init__(self, tokenizer, model):
    def __init__(self):
        # self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        # self.model = BertForMaskedLM.from_pretrained("bert-base-uncased")

        # self.tokenizer = tokenizer
        # self.model = model

        self.tokenizer = BertTokenizer.from_pretrained("bert-large-cased-whole-word-masking")
        self.model = BertForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")

        # self.tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
        # self.model = RobertaForMaskedLM.from_pretrained("roberta-base")

        self.stop_words = set(stopwords.words('english'))

    def remove_stopwords(self, words):
        """
        Remove stopwords from the given list of words.

        Args:
            words (list): List of words.

        Returns:
            list: List of non-stop words.
        """
        return [word for word in words if word.lower() not in self.stop_words]

    def adjust_ngram_indices(self, original_words, common_ngrams):
        """
        Adjust indices of common n-grams after removing stopwords.

        Args:
            original_words (list): Original list of words.
            common_ngrams (dict): Common n-grams and their indices.

        Returns:
            dict: Adjusted common n-grams with updated indices.
        """
        non_stop_words = self.remove_stopwords(original_words)
        original_to_non_stop = []
        non_stop_idx = 0

        for original_idx, word in enumerate(original_words):
            if word.lower() not in self.stop_words:
                original_to_non_stop.append((original_idx, non_stop_idx))
                non_stop_idx += 1

        adjusted_ngrams = {}
        for ngram, positions in common_ngrams.items():
            adjusted_positions = []
            for start, end in positions:
                try:
                    new_start = next(non_stop for orig, non_stop in original_to_non_stop if orig == start)
                    new_end = next(non_stop for orig, non_stop in original_to_non_stop if orig == end)
                    adjusted_positions.append((new_start, new_end))
                except StopIteration:
                    continue  # Skip if indices cannot be mapped
            adjusted_ngrams[ngram] = adjusted_positions

        return adjusted_ngrams

    def mask_sentence_random(self, sentence, common_ngrams):
        """
        Mask words in the sentence based on the specified rules after removing stopwords.
        """
        # Split sentence into words
        original_words = sentence.split()
        
        # Handle punctuation at the end
        has_punctuation = False
        punctuation = None
        if original_words and any(original_words[-1].endswith(p) for p in ['.', ',', '!', '?', ';', ':']):
            has_punctuation = True
            punctuation = original_words[-1][-1]
            original_words = original_words[:-1]
        
        print(f' ---- original_words : {original_words} ----- ')
        
        # Process words without punctuation
        non_stop_words = self.remove_stopwords(original_words)
        adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams)
        
        # Rest of the existing function code...
        mask_indices = []
        ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions]
        
        if ngram_positions:
            first_ngram_start = ngram_positions[0][0]
            if first_ngram_start > 0:
                mask_index_before_ngram = random.randint(0, first_ngram_start-1)
                mask_indices.append(mask_index_before_ngram)

            # Mask words between common n-grams
            for i in range(len(ngram_positions) - 1):
                end_prev = ngram_positions[i][1]
                start_next = ngram_positions[i + 1][0]
                if start_next > end_prev + 1:
                    mask_index_between_ngrams = random.randint(end_prev + 1, start_next - 1)
                    mask_indices.append(mask_index_between_ngrams)

            # Mask a word after the last common n-gram
            last_ngram_end = ngram_positions[-1][1]
            if last_ngram_end < len(non_stop_words) - 1:
                mask_index_after_ngram = random.randint(last_ngram_end + 1, len(non_stop_words) - 1)
                mask_indices.append(mask_index_after_ngram)

        # Create mapping from non-stop words to original indices
        non_stop_to_original = {}
        non_stop_idx = 0
        for orig_idx, word in enumerate(original_words):
            if word.lower() not in self.stop_words:
                non_stop_to_original[non_stop_idx] = orig_idx
                non_stop_idx += 1

        # Map mask indices and apply masks
        original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices]
        masked_words = original_words.copy()
        for idx in original_mask_indices:
            masked_words[idx] = self.tokenizer.mask_token
            # masked_words[idx] = '<mask>' # for roberta

        # Add back punctuation if it existed
        if has_punctuation:
            masked_words.append(punctuation)

        print(f' ***** masked_words at end  : {masked_words} ***** ')
        print(f' ***** original_mask_indices : {original_mask_indices} ***** ')
        print(f' ***** TESTING : {" ".join(masked_words)} ***** ')

        return " ".join(masked_words), original_mask_indices

    def mask_sentence_pseudorandom(self, sentence, common_ngrams):
        """
        Mask words in the sentence based on the specified rules after removing stopwords.
        """
        # Split sentence into words
        random.seed(3)
        original_words = sentence.split()
        
        # Handle punctuation at the end
        has_punctuation = False
        punctuation = None
        if original_words and any(original_words[-1].endswith(p) for p in ['.', ',', '!', '?', ';', ':']):
            has_punctuation = True
            punctuation = original_words[-1][-1]
            original_words = original_words[:-1]
        
        print(f' ---- original_words : {original_words} ----- ')
        
        # Process words without punctuation
        non_stop_words = self.remove_stopwords(original_words)
        adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams)
        
        # Rest of the existing function code...
        mask_indices = []
        ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions]
        
        if ngram_positions:
            first_ngram_start = ngram_positions[0][0]
            if first_ngram_start > 0:
                mask_index_before_ngram = random.randint(0, first_ngram_start-1)
                mask_indices.append(mask_index_before_ngram)

            # Mask words between common n-grams
            for i in range(len(ngram_positions) - 1):
                end_prev = ngram_positions[i][1]
                start_next = ngram_positions[i + 1][0]
                if start_next > end_prev + 1:
                    mask_index_between_ngrams = random.randint(end_prev + 1, start_next - 1)
                    mask_indices.append(mask_index_between_ngrams)

            # Mask a word after the last common n-gram
            last_ngram_end = ngram_positions[-1][1]
            if last_ngram_end < len(non_stop_words) - 1:
                mask_index_after_ngram = random.randint(last_ngram_end + 1, len(non_stop_words) - 1)
                mask_indices.append(mask_index_after_ngram)

        # Create mapping from non-stop words to original indices
        non_stop_to_original = {}
        non_stop_idx = 0
        for orig_idx, word in enumerate(original_words):
            if word.lower() not in self.stop_words:
                non_stop_to_original[non_stop_idx] = orig_idx
                non_stop_idx += 1

        # Map mask indices and apply masks
        original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices]
        masked_words = original_words.copy()
        for idx in original_mask_indices:
            masked_words[idx] = self.tokenizer.mask_token
            # masked_words[idx] = '<mask>' # for roberta

        # Add back punctuation if it existed
        if has_punctuation:
            masked_words.append(punctuation)

        print(f' ***** masked_words at end  : {masked_words} ***** ')
        print(f' ***** original_mask_indices : {original_mask_indices} ***** ')
        print(f' ***** TESTING : {" ".join(masked_words)} ***** ')

        return " ".join(masked_words), original_mask_indices


    def calculate_word_entropy(self, sentence, word_position):
        """
        Calculate entropy for a specific word position in the sentence.
        
        Args:
            sentence (str): The input sentence
            word_position (int): Position of the word to calculate entropy for
            
        Returns:
            float: Entropy value for the word
        """
        words = sentence.split()
        masked_words = words.copy()
        masked_words[word_position] = self.tokenizer.mask_token
        masked_sentence = " ".join(masked_words)
        
        input_ids = self.tokenizer(masked_sentence, return_tensors="pt")["input_ids"]
        mask_token_index = torch.where(input_ids == self.tokenizer.mask_token_id)[1]
        
        with torch.no_grad():
            outputs = self.model(input_ids)
            logits = outputs.logits
        
        # Get probabilities for the masked position
        probs = torch.nn.functional.softmax(logits[0, mask_token_index], dim=-1)
        # Calculate entropy: -sum(p * log(p))
        entropy = -torch.sum(probs * torch.log(probs + 1e-9))
        
        return entropy.item()

    def mask_sentence_entropy(self, sentence, common_ngrams):
        """
        Mask words in the sentence based on entropy, following n-gram positioning rules.
        
        Args:
            sentence (str): Original sentence
            common_ngrams (dict): Common n-grams and their indices
            
        Returns:
            str: Masked sentence
        """
        # Split sentence into words
        original_words = sentence.split()
        
        # Handle punctuation at the end
        has_punctuation = False
        punctuation = None
        if original_words and any(original_words[-1].endswith(p) for p in ['.', ',', '!', '?', ';', ':']):
            has_punctuation = True
            punctuation = original_words[-1][-1]
            original_words = original_words[:-1]
        
        # Process words without punctuation
        non_stop_words = self.remove_stopwords(original_words)
        adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams)
        
        # Create mapping from non-stop words to original indices
        non_stop_to_original = {}
        original_to_non_stop = {}
        non_stop_idx = 0
        for orig_idx, word in enumerate(original_words):
            if word.lower() not in self.stop_words:
                non_stop_to_original[non_stop_idx] = orig_idx
                original_to_non_stop[orig_idx] = non_stop_idx
                non_stop_idx += 1

        ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions]
        mask_indices = []

        if ngram_positions:
            # Handle words before first n-gram
            first_ngram_start = ngram_positions[0][0]
            if first_ngram_start > 0:
                candidate_positions = range(0, first_ngram_start)
                entropies = [(pos, self.calculate_word_entropy(sentence, non_stop_to_original[pos]))
                            for pos in candidate_positions]
                mask_indices.append(max(entropies, key=lambda x: x[1])[0])

            # Handle words between n-grams
            for i in range(len(ngram_positions) - 1):
                end_prev = ngram_positions[i][1]
                start_next = ngram_positions[i + 1][0]
                if start_next > end_prev + 1:
                    candidate_positions = range(end_prev + 1, start_next)
                    entropies = [(pos, self.calculate_word_entropy(sentence, non_stop_to_original[pos]))
                                for pos in candidate_positions]
                    mask_indices.append(max(entropies, key=lambda x: x[1])[0])

            # Handle words after last n-gram
            last_ngram_end = ngram_positions[-1][1]
            if last_ngram_end < len(non_stop_words) - 1:
                candidate_positions = range(last_ngram_end + 1, len(non_stop_words))
                entropies = [(pos, self.calculate_word_entropy(sentence, non_stop_to_original[pos]))
                            for pos in candidate_positions]
                mask_indices.append(max(entropies, key=lambda x: x[1])[0])

        # Map mask indices to original sentence positions and apply masks
        original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices]
        masked_words = original_words.copy()
        for idx in original_mask_indices:
            masked_words[idx] = self.tokenizer.mask_token

        # Add back punctuation if it existed
        if has_punctuation:
            masked_words.append(punctuation)

        return " ".join(masked_words), original_mask_indices

    def calculate_mask_logits(self, original_sentence, original_mask_indices):
        """
        Calculate logits for masked tokens in the sentence using BERT.

        Args:
            original_sentence (str): Original sentence without masks
            original_mask_indices (list): List of indices to mask

        Returns:
            dict: Masked token indices and their logits
        """
        print('==========================================================================================================')
        words = original_sentence.split()
        print(f' ##### calculate_mask_logits >> words : {words} ##### ')
        mask_logits = {}

        for idx in original_mask_indices:
            # Create a copy of words and mask the current position
            print(f' ---- idx : {idx} ----- ')
            masked_words = words.copy()
            masked_words[idx] = '[MASK]'
            # masked_words[idx] = '<mask>' # for roberta
            masked_sentence = " ".join(masked_words)
            print(f' ---- masked_sentence : {masked_sentence} ----- ')

            # Calculate logits for the current mask
            input_ids = self.tokenizer(masked_sentence, return_tensors="pt")["input_ids"]
            mask_token_index = torch.where(input_ids == self.tokenizer.mask_token_id)[1]

            with torch.no_grad():
                outputs = self.model(input_ids)
                logits = outputs.logits

            # Extract logits for the masked position
            mask_logits_tensor = logits[0, mask_token_index, :] 

            # Get top logits and corresponding tokens
            top_mask_logits, top_mask_indices = torch.topk(mask_logits_tensor, 100, dim=-1)  # Get more candidates

            # Convert token IDs to words and filter out subword tokens
            top_tokens = []
            top_logits = []
            seen_words = set()  # To keep track of unique words

            for token_id, logit in zip(top_mask_indices[0], top_mask_logits[0]):
                token = self.tokenizer.convert_ids_to_tokens(token_id.item())
                
                # Skip if it's a subword token (starts with ##)
                if token.startswith('##'):
                    continue
                    
                # Convert token to proper word
                word = self.tokenizer.convert_tokens_to_string([token]).strip()
                
                # Only add if it's a new word and not empty
                if word and word not in seen_words:
                    seen_words.add(word)
                    top_tokens.append(word)
                    top_logits.append(logit.item())
                    
                    # Break if we have 50 unique complete words
                    if len(top_tokens) == 50:
                        break

            # print(f' ---- top_tokens : {top_tokens} ----- ')

            # Store results
            mask_logits[idx] = {
                "tokens": top_tokens,
                "logits": top_logits
            }

        return mask_logits

    # def calculate_mask_logits(self, original_sentence, original_mask_indices):
    #     """
    #     Calculate logits for masked tokens in the sentence using BERT.

    #     Args:
    #         original_sentence (str): Original sentence without masks
    #         original_mask_indices (list): List of indices to mask

    #     Returns:
    #         dict: Masked token indices and their logits
    #     """
    #     words = original_sentence.split()
    #     print(f' ##### calculate_mask_logits >> words : {words} ##### ')
    #     mask_logits = {}

    #     for idx in original_mask_indices:
    #         # Create a copy of words and mask the current position
    #         print(f' ---- idx : {idx} ----- ')
    #         masked_words = words.copy()
    #         print(f' ---- words : {masked_words} ----- ')
    #         # masked_words[idx] = self.tokenizer.mask_token
    #         masked_words[idx] = '[MASK]'
    #         print(f' ---- masked_words : {masked_words} ----- ')
    #         masked_sentence = " ".join(masked_words)
    #         print(f' ---- masked_sentence : {masked_sentence} ----- ')

    #         # Calculate logits for the current mask
    #         input_ids = self.tokenizer(masked_sentence, return_tensors="pt")["input_ids"]
    #         mask_token_index = torch.where(input_ids == self.tokenizer.mask_token_id)[1]

    #         with torch.no_grad():
    #             outputs = self.model(input_ids)
    #             logits = outputs.logits

    #         # Extract logits for the masked position
    #         mask_logits_tensor = logits[0, mask_token_index, :] 

    #         # Get top 50 logits and corresponding tokens
    #         top_mask_logits, top_mask_indices = torch.topk(mask_logits_tensor, 50, dim=-1)

    #         # Convert token IDs to words
    #         top_tokens = [self.tokenizer.convert_ids_to_tokens(token_id.item()) for token_id in top_mask_indices[0]]
    #         print(f' ---- top_tokens : {top_tokens} ----- ')

    #         # Store results
    #         mask_logits[idx] = {
    #             "tokens": top_tokens,
    #             "logits": top_mask_logits.tolist()
    #         }

    #     return mask_logits


    def process_sentences(self, sentences, result_dict, method="random"):
        """
        Process sentences and calculate logits for masked tokens.
        """
        results = {}

        for sentence, ngrams in result_dict.items():
            # Split punctuation from the last word before processing
            words = sentence.split()
            last_word = words[-1]
            if any(last_word.endswith(p) for p in ['.', ',', '!', '?', ';', ':']):
                # Split the last word and punctuation
                words[-1] = last_word[:-1]
                punctuation = last_word[-1]
                # Rejoin with space before punctuation to treat it as separate token
                processed_sentence = " ".join(words) + " " + punctuation
            else:
                processed_sentence = sentence
            
            if method == "random":
                masked_sentence, original_mask_indices = self.mask_sentence_random(processed_sentence, ngrams)
            elif method == "pseudorandom":
                masked_sentence, original_mask_indices = self.mask_sentence_pseudorandom(processed_sentence, ngrams)
            else:  # entropy
                masked_sentence, original_mask_indices = self.mask_sentence_entropy(processed_sentence, ngrams)
                
            logits = self.calculate_mask_logits(processed_sentence, original_mask_indices)
            results[sentence] = {
                "masked_sentence": masked_sentence,
                "mask_logits": logits
            }

        return results



if __name__ == "__main__":
    # !!! Working both the cases regardless if the stopword is removed or not 
    sentences = [
        "The quick brown fox jumps over small cat the lazy dog everyday again and again .",
        # "A speedy brown fox jumps over a lazy dog.",
        # "A swift brown fox leaps over the lethargic dog."

    ]
    result_dict ={
        'The quick brown fox jumps over small cat the lazy dog everyday again and again .': {'brown fox': [(2, 3)],'cat': [(7, 7)], 'dog': [(10, 10)]}, 
        # 'A speedy brown fox jumps over a lazy dog.': {'brown fox': [(2, 3)], 'dog': [(8, 8)]}, 
        # 'A swift brown fox leaps over the lethargic dog.': {'brown fox': [(2, 3)], 'dog': [(8, 8)]}
    }


    processor = MaskingProcessor()
    # results_random = processor.process_sentences(sentences, result_dict)
    results_entropy = processor.process_sentences(sentences, result_dict, method="random")

    '''
        results structure : 
        results = {
                    "The quick brown fox jumps over the lazy dog everyday.": 
                    {  # Original sentence as key
                        "masked_sentence": str,  # The sentence with [MASK] tokens
                        "mask_logits": 
                        {  # Dictionary of mask positions and their predictions
                            1: 
                                {  # Position of mask in sentence
                                    "tokens" (words) : list,  # List of top 50 predicted tokens
                                    "logits" (probabilities) : list   # Corresponding logits for those tokens
                                },
                            7: 
                                {
                                    "tokens" (words) : list,
                                    "logits" (probabilities) : list
                                },
                            10: 
                                {
                                    "tokens (words)": list,
                                    "logits (probabilities)": list
                                }
                        }
                    }
                }

    '''
    # results_entropy = processor.process_sentences(sentences, result_dict, method="entropy", remove_stopwords=False)

    for sentence, output in results_entropy.items():
        print(f"Original Sentence (Random): {sentence}")
        print(f"Masked Sentence (Random): {output['masked_sentence']}")
        # print(f"Mask Logits (Random): {output['mask_logits']}")
        # print(f' type(output["mask_logits"]) : {type(output["mask_logits"])}')
        # print(f' length of output["mask_logits"] : {len(output["mask_logits"])}')
        # print(f' output["mask_logits"].keys() : {output["mask_logits"].keys()}')
        # print('--------------------------------')
        # for mask_idx, logits in output["mask_logits"].items():
        #     print(f"Logits for [MASK] at position {mask_idx}:")
        #     print(f' logits : {logits[:5]}')  # List of logits for all vocabulary tokens
        #     print(f' len(logits) : {len(logits)}')


# ------------------------------------------------------------------------------------------------
    # def mask_sentence_random(self, sentence, common_ngrams):
    #     """
    #     Mask words in the sentence based on the specified rules after removing stopwords.
    #     """
    #     original_words = sentence.split()
    #     # print(f' ---- original_words : {original_words} ----- ')
    #     non_stop_words = self.remove_stopwords(original_words)
    #     # print(f' ---- non_stop_words : {non_stop_words} ----- ')
    #     adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams)
    #     # print(f' ---- common_ngrams : {common_ngrams} ----- ')
    #     # print(f' ---- adjusted_ngrams : {adjusted_ngrams} ----- ')

    #     mask_indices = []

    #     # Extract n-gram positions in non-stop words
    #     ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions]
        
    #     # Mask a word before the first common n-gram
    #     if ngram_positions:
    #         # print(f' ---- ngram_positions : {ngram_positions} ----- ')
    #         first_ngram_start = ngram_positions[0][0]
    #         # print(f' ---- first_ngram_start : {first_ngram_start} ----- ')
    #         if first_ngram_start > 0:
    #             mask_index_before_ngram = random.randint(0, first_ngram_start-1)
    #             # print(f' ---- mask_index_before_ngram : {mask_index_before_ngram} ----- ')
    #             mask_indices.append(mask_index_before_ngram)

    #         # Mask words between common n-grams
    #         for i in range(len(ngram_positions) - 1):
    #             end_prev = ngram_positions[i][1]
    #             # print(f' ---- end_prev : {end_prev} ----- ')
    #             start_next = ngram_positions[i + 1][0]
    #             # print(f' ---- start_next : {start_next} ----- ')
    #             if start_next > end_prev + 1:
    #                 mask_index_between_ngrams = random.randint(end_prev + 1, start_next - 1)
    #                 # print(f' ---- mask_index_between_ngrams : {mask_index_between_ngrams} ----- ')
    #                 mask_indices.append(mask_index_between_ngrams)

    #         # Mask a word after the last common n-gram
    #         last_ngram_end = ngram_positions[-1][1]
    #         if last_ngram_end < len(non_stop_words) - 1:
    #             # print(f' ---- last_ngram_end : {last_ngram_end} ----- ')
    #             mask_index_after_ngram = random.randint(last_ngram_end + 1, len(non_stop_words) - 1)
    #             # print(f' ---- mask_index_after_ngram : {mask_index_after_ngram} ----- ')
    #             mask_indices.append(mask_index_after_ngram)

    #     # Create mapping from non-stop words to original indices
    #     non_stop_to_original = {}
    #     non_stop_idx = 0
    #     for orig_idx, word in enumerate(original_words):
    #         if word.lower() not in self.stop_words:
    #             non_stop_to_original[non_stop_idx] = orig_idx
    #             non_stop_idx += 1

    #     # Map mask indices from non-stop word positions to original positions
    #     # print(f' ---- non_stop_to_original : {non_stop_to_original} ----- ')
    #     original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices]
    #     # print(f' ---- original_mask_indices : {original_mask_indices} ----- ')

    #     # Apply masks to the original sentence
    #     masked_words = original_words.copy()
    #     for idx in original_mask_indices:
    #         masked_words[idx] = self.tokenizer.mask_token

    #     return " ".join(masked_words), original_mask_indices