File size: 14,705 Bytes
060ac52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import random
import torch
import logging
from transformers import BertTokenizer, BertForMaskedLM
from nltk.corpus import stopwords
import nltk
from transformers import RobertaTokenizer, RobertaForMaskedLM
from tqdm import tqdm

# Set logging to WARNING for a cleaner terminal.
logging.basicConfig(level=logging.WARNING, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# Ensure stopwords are downloaded
try:
    nltk.data.find('corpora/stopwords')
except LookupError:
    nltk.download('stopwords')

class MaskingProcessor:
    def __init__(self, tokenizer, model):
        self.tokenizer = tokenizer
        self.model = model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.stop_words = set(stopwords.words('english'))
        tqdm.write(f"[MaskingProcessor] Initialized on device: {self.device}")

    def remove_stopwords(self, words):
        return [word for word in words if word.lower() not in self.stop_words]

    def adjust_ngram_indices(self, original_words, common_ngrams):
        logger.info("Adjusting n-gram indices.")
        non_stop_words = self.remove_stopwords(original_words)
        original_to_non_stop = []
        non_stop_idx = 0
        for original_idx, word in enumerate(original_words):
            if word.lower() not in self.stop_words:
                original_to_non_stop.append((original_idx, non_stop_idx))
                non_stop_idx += 1
        adjusted_ngrams = {}
        for ngram, positions in common_ngrams.items():
            adjusted_positions = []
            for start, end in positions:
                try:
                    new_start = next(non_stop for orig, non_stop in original_to_non_stop if orig == start)
                    new_end = next(non_stop for orig, non_stop in original_to_non_stop if orig == end)
                    adjusted_positions.append((new_start, new_end))
                except StopIteration:
                    continue
            adjusted_ngrams[ngram] = adjusted_positions
        return adjusted_ngrams

    def mask_sentence_random(self, sentence, common_ngrams):
        tqdm.write(f"[MaskingProcessor] Masking (random) sentence: {sentence}")
        original_words = sentence.split()
        has_punctuation = False
        punctuation = ''
        if original_words and any(original_words[-1].endswith(p) for p in ['.', ',', '!', '?', ';', ':']):
            has_punctuation = True
            punctuation = original_words[-1][-1]
            original_words = original_words[:-1]
        
        non_stop_words = self.remove_stopwords(original_words)
        adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams)
        mask_indices = []
        
        ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions]
        if ngram_positions:
            first_ngram_start = ngram_positions[0][0]
            if first_ngram_start > 0:
                mask_index_before_ngram = random.randint(0, first_ngram_start-1)
                mask_indices.append(mask_index_before_ngram)

            for i in range(len(ngram_positions) - 1):
                end_prev = ngram_positions[i][1]
                start_next = ngram_positions[i + 1][0]
                if start_next > end_prev + 1:
                    mask_index_between_ngrams = random.randint(end_prev + 1, start_next - 1)
                    mask_indices.append(mask_index_between_ngrams)

            last_ngram_end = ngram_positions[-1][1]
            if last_ngram_end < len(non_stop_words) - 1:
                mask_index_after_ngram = random.randint(last_ngram_end + 1, len(non_stop_words) - 1)
                mask_indices.append(mask_index_after_ngram)

        non_stop_to_original = {}
        non_stop_idx = 0
        for orig_idx, word in enumerate(original_words):
            if word.lower() not in self.stop_words:
                non_stop_to_original[non_stop_idx] = orig_idx
                non_stop_idx += 1
        
        original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices]
        masked_words = original_words.copy()
        for idx in original_mask_indices:
            masked_words[idx] = self.tokenizer.mask_token

        if has_punctuation:
            masked_words.append(punctuation)

        logger.info(f"Masked sentence (random): {' '.join(masked_words)}")
        return " ".join(masked_words), original_mask_indices

    def mask_sentence_pseudorandom(self, sentence, common_ngrams):
        logger.info(f"Masking sentence using pseudorandom strategy: {sentence}")
        random.seed(3)
        original_words = sentence.split()
        has_punctuation = False
        punctuation = ''
        if original_words and any(original_words[-1].endswith(p) for p in ['.', ',', '!', '?', ';', ':']):
            has_punctuation = True
            punctuation = original_words[-1][-1]
            original_words = original_words[:-1]
        
        non_stop_words = self.remove_stopwords(original_words)
        adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams)
        mask_indices = []
        ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions]
        
        if ngram_positions:
            first_ngram_start = ngram_positions[0][0]
            if first_ngram_start > 0:
                mask_index_before_ngram = random.randint(0, first_ngram_start-1)
                mask_indices.append(mask_index_before_ngram)
            for i in range(len(ngram_positions) - 1):
                end_prev = ngram_positions[i][1]
                start_next = ngram_positions[i + 1][0]
                if start_next > end_prev + 1:
                    mask_index_between_ngrams = random.randint(end_prev + 1, start_next - 1)
                    mask_indices.append(mask_index_between_ngrams)
            last_ngram_end = ngram_positions[-1][1]
            if last_ngram_end < len(non_stop_words) - 1:
                mask_index_after_ngram = random.randint(last_ngram_end + 1, len(non_stop_words) - 1)
                mask_indices.append(mask_index_after_ngram)

        non_stop_to_original = {}
        non_stop_idx = 0
        for orig_idx, word in enumerate(original_words):
            if word.lower() not in self.stop_words:
                non_stop_to_original[non_stop_idx] = orig_idx
                non_stop_idx += 1
        
        original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices]
        masked_words = original_words.copy()
        for idx in original_mask_indices:
            masked_words[idx] = self.tokenizer.mask_token

        if has_punctuation:
            masked_words.append(punctuation)

        logger.info(f"Masked sentence (pseudorandom): {' '.join(masked_words)}")
        return " ".join(masked_words), original_mask_indices

    def mask_sentence_entropy(self, sentence, common_ngrams):
        logger.info(f"Masking sentence using entropy strategy: {sentence}")
        original_words = sentence.split()
        has_punctuation = False
        punctuation = ''
        if original_words and any(original_words[-1].endswith(p) for p in ['.', ',', '!', '?', ';', ':']):
            has_punctuation = True
            punctuation = original_words[-1][-1]
            original_words = original_words[:-1]
        
        non_stop_words = self.remove_stopwords(original_words)
        adjusted_ngrams = self.adjust_ngram_indices(original_words, common_ngrams)
        mask_indices = []
        ngram_positions = [pos for positions in adjusted_ngrams.values() for pos in positions]
        non_stop_to_original = {}
        non_stop_idx = 0
        for orig_idx, word in enumerate(original_words):
            if word.lower() not in self.stop_words:
                non_stop_to_original[non_stop_idx] = orig_idx
                non_stop_idx += 1

        if ngram_positions:
            first_ngram_start = ngram_positions[0][0]
            if first_ngram_start > 0:
                candidate_positions = range(0, first_ngram_start)
                entropies = [(pos, self.calculate_word_entropy(sentence, non_stop_to_original[pos])) for pos in candidate_positions]
                mask_indices.append(max(entropies, key=lambda x: x[1])[0])
            for i in range(len(ngram_positions) - 1):
                end_prev = ngram_positions[i][1]
                start_next = ngram_positions[i + 1][0]
                if start_next > end_prev + 1:
                    candidate_positions = range(end_prev + 1, start_next)
                    entropies = [(pos, self.calculate_word_entropy(sentence, non_stop_to_original[pos])) for pos in candidate_positions]
                    mask_indices.append(max(entropies, key=lambda x: x[1])[0])
            last_ngram_end = ngram_positions[-1][1]
            if last_ngram_end < len(non_stop_words) - 1:
                candidate_positions = range(last_ngram_end + 1, len(non_stop_words))
                entropies = [(pos, self.calculate_word_entropy(sentence, non_stop_to_original[pos])) for pos in candidate_positions]
                mask_indices.append(max(entropies, key=lambda x: x[1])[0])
        
        original_mask_indices = [non_stop_to_original[idx] for idx in mask_indices]
        masked_words = original_words.copy()
        for idx in original_mask_indices:
            masked_words[idx] = self.tokenizer.mask_token

        if has_punctuation:
            masked_words.append(punctuation)

        logger.info(f"Masked sentence (entropy): {' '.join(masked_words)}")
        return " ".join(masked_words), original_mask_indices

    def calculate_mask_logits(self, original_sentence, original_mask_indices):
        logger.info(f"Calculating mask logits for sentence: {original_sentence}")
        words = original_sentence.split()
        mask_logits = {}
        for idx in original_mask_indices:
            masked_words = words.copy()
            masked_words[idx] = self.tokenizer.mask_token
            masked_sentence = " ".join(masked_words)
            input_ids = self.tokenizer(masked_sentence, return_tensors="pt")["input_ids"].to(self.device)
            mask_token_index = torch.where(input_ids == self.tokenizer.mask_token_id)[1]
            with torch.no_grad():
                outputs = self.model(input_ids)
                logits = outputs.logits
            mask_logits_tensor = logits[0, mask_token_index, :]
            top_mask_logits, top_mask_indices = torch.topk(mask_logits_tensor, 100, dim=-1)
            top_tokens = []
            top_logits = []
            seen_words = set()
            for token_id, logit in zip(top_mask_indices[0], top_mask_logits[0]):
                token = self.tokenizer.convert_ids_to_tokens(token_id.item())
                if token.startswith('##'):
                    continue
                word = self.tokenizer.convert_tokens_to_string([token]).strip()
                if word and word not in seen_words:
                    seen_words.add(word)
                    top_tokens.append(word)
                    top_logits.append(logit.item())
                    if len(top_tokens) == 50:
                        break
            mask_logits[idx] = {
                "tokens": top_tokens,
                "logits": top_logits
            }
        logger.info("Completed calculating mask logits.")
        return mask_logits

    def calculate_word_entropy(self, sentence, word_position):
        logger.info(f"Calculating word entropy for position {word_position} in sentence: {sentence}")
        words = sentence.split()
        masked_words = words.copy()
        masked_words[word_position] = self.tokenizer.mask_token
        masked_sentence = " ".join(masked_words)
        input_ids = self.tokenizer(masked_sentence, return_tensors="pt")["input_ids"].to(self.device)
        mask_token_index = torch.where(input_ids == self.tokenizer.mask_token_id)[1]
        with torch.no_grad():
            outputs = self.model(input_ids)
            logits = outputs.logits
        probs = torch.nn.functional.softmax(logits[0, mask_token_index], dim=-1)
        entropy = -torch.sum(probs * torch.log(probs + 1e-9))
        logger.info(f"Computed entropy: {entropy.item()}")
        return entropy.item()

    def process_sentences(self, sentences_list, common_grams, method="random"):
        tqdm.write(f"[MaskingProcessor] Processing sentences using method: {method}")
        results = {}
        for sentence, ngrams in tqdm(common_grams.items(), desc="Masking Sentences"):
            words = sentence.split()
            last_word = words[-1]
            if any(last_word.endswith(p) for p in ['.', ',', '!', '?', ';', ':']):
                words[-1] = last_word[:-1]
                punctuation = last_word[-1]
                processed_sentence = " ".join(words) + " " + punctuation
            else:
                processed_sentence = sentence
            
            if method == "random":
                masked_sentence, original_mask_indices = self.mask_sentence_random(processed_sentence, ngrams)
            elif method == "pseudorandom":
                masked_sentence, original_mask_indices = self.mask_sentence_pseudorandom(processed_sentence, ngrams)
            else:  # entropy
                masked_sentence, original_mask_indices = self.mask_sentence_entropy(processed_sentence, ngrams)
            
            logits = self.calculate_mask_logits(processed_sentence, original_mask_indices)
            results[sentence] = {
                "masked_sentence": masked_sentence,
                "mask_logits": logits
            }
            logger.info(f"Processed sentence: {sentence}")
        tqdm.write("[MaskingProcessor] Completed processing sentences.")
        return results

if __name__ == "__main__":
    sentences = [
        "The quick brown fox jumps over small cat the lazy dog everyday again and again .",
    ]
    result_dict = {
        'The quick brown fox jumps over small cat the lazy dog everyday again and again .': {
            'brown fox': [(2, 3)],
            'cat': [(7, 7)],
            'dog': [(10, 10)]
        }
    }
    processor = MaskingProcessor(
        BertTokenizer.from_pretrained("bert-large-cased-whole-word-masking"), 
        BertForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")
    )
    results_entropy = processor.process_sentences(sentences_list, common_grams, method="random")
    for sentence, output in results_entropy.items():
        logger.info(f"Original Sentence (Random): {sentence}")
        logger.info(f"Masked Sentence (Random): {output['masked_sentence']}")