pavank007's picture
Update app.py
1840cfa verified
import gradio as gr
import torch
import numpy as np
import cv2
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
from transformers import DPTImageProcessor, DPTForDepthEstimation
import warnings
warnings.filterwarnings("ignore")
# Load segmentation model - using SegFormer which is compatible with AutoModelForSemanticSegmentation
seg_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
seg_model = AutoModelForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
# Load depth estimation model
depth_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
def safe_resize(image, target_size, interpolation=cv2.INTER_LINEAR):
"""Safely resize an image with validation checks."""
if image is None:
return None
# Ensure image is a proper numpy array
if not isinstance(image, np.ndarray):
return None
# Check that dimensions are valid (non-zero)
h, w = target_size
if h <= 0 or w <= 0 or image.shape[0] <= 0 or image.shape[1] <= 0:
return image # Return original if target dimensions are invalid
# Handle grayscale images differently
if len(image.shape) == 2:
return cv2.resize(image, (w, h), interpolation=interpolation)
else:
return cv2.resize(image, (w, h), interpolation=interpolation)
def apply_gaussian_blur(image, mask, sigma=15):
"""Apply Gaussian blur to the background of an image based on a mask."""
try:
# Convert mask to binary (0 and 255)
if mask.max() <= 1.0:
binary_mask = (mask * 255).astype(np.uint8)
else:
binary_mask = mask.astype(np.uint8)
# Create a blurred version of the entire image
blurred = cv2.GaussianBlur(image, (0, 0), sigma)
# Resize mask to match image dimensions if needed
if binary_mask.shape[:2] != image.shape[:2]:
binary_mask = safe_resize(binary_mask, (image.shape[0], image.shape[1]))
# Create a 3-channel mask if the input mask is single-channel
if len(binary_mask.shape) == 2:
mask_3ch = np.stack([binary_mask, binary_mask, binary_mask], axis=2)
else:
mask_3ch = binary_mask
# Normalize mask to range [0, 1]
mask_3ch = mask_3ch / 255.0
# Combine original image (foreground) with blurred image (background) using the mask
result = image * mask_3ch + blurred * (1 - mask_3ch)
return result.astype(np.uint8)
except Exception as e:
print(f"Error in apply_gaussian_blur: {e}")
return image # Return original image if there's an error
def apply_depth_blur(image, depth_map, max_sigma=25):
"""Apply variable Gaussian blur based on depth map."""
try:
# Normalize depth map to range [0, 1]
if depth_map.max() > 1.0:
depth_norm = depth_map / depth_map.max()
else:
depth_norm = depth_map
# Resize depth map to match image dimensions if needed
if depth_norm.shape[:2] != image.shape[:2]:
depth_norm = safe_resize(depth_norm, (image.shape[0], image.shape[1]))
# Create output image
result = np.zeros_like(image)
# Instead of many small blurs, use fewer blur levels for efficiency
blur_levels = 5
step = max_sigma / blur_levels
for i in range(blur_levels):
sigma = (i + 1) * step
# Calculate depth range for this blur level
lower_bound = i / blur_levels
upper_bound = (i + 1) / blur_levels
# Create mask for pixels in this depth range
mask = np.logical_and(depth_norm >= lower_bound, depth_norm <= upper_bound).astype(np.float32)
# Skip if no pixels in this range
if not np.any(mask):
continue
# Apply blur for this level
blurred = cv2.GaussianBlur(image, (0, 0), sigma)
# Create 3-channel mask
mask_3ch = np.stack([mask, mask, mask], axis=2) if len(mask.shape) == 2 else mask
# Add to result
result += (blurred * mask_3ch).astype(np.uint8)
# Check if there are any pixels not covered and fill with original
total_mask = np.zeros_like(depth_norm)
for i in range(blur_levels):
lower_bound = i / blur_levels
upper_bound = (i + 1) / blur_levels
mask = np.logical_and(depth_norm >= lower_bound, depth_norm <= upper_bound).astype(np.float32)
total_mask += mask
missing_mask = (total_mask < 0.5).astype(np.float32)
if np.any(missing_mask):
missing_mask_3ch = np.stack([missing_mask, missing_mask, missing_mask], axis=2)
result += (image * missing_mask_3ch).astype(np.uint8)
return result
except Exception as e:
print(f"Error in apply_depth_blur: {e}")
return image # Return original image if there's an error
def get_segmentation_mask(image_pil):
"""Get segmentation mask for person/foreground from an image."""
try:
# Process the image with the segmentation model
inputs = seg_processor(images=image_pil, return_tensors="pt")
with torch.no_grad():
outputs = seg_model(**inputs)
# Get the predicted segmentation mask
logits = outputs.logits
upsampled_logits = torch.nn.functional.interpolate(
logits,
size=image_pil.size[::-1], # Resize directly to original size
mode="bilinear",
align_corners=False,
)
# Get the predicted class for each pixel
predicted_mask = upsampled_logits.argmax(dim=1)[0]
# Convert the mask to a numpy array
mask_np = predicted_mask.cpu().numpy()
# Create a foreground mask - human and common foreground objects
# Classes based on ADE20K dataset
foreground_classes = [12] # Person class (you can add more classes as needed)
# Create a binary mask for foreground classes
foreground_mask = np.zeros_like(mask_np)
for cls in foreground_classes:
foreground_mask[mask_np == cls] = 1
return foreground_mask
except Exception as e:
print(f"Error in get_segmentation_mask: {e}")
# Return a default mask (all ones) in case of error
return np.ones((image_pil.size[1], image_pil.size[0]), dtype=np.uint8)
def get_depth_map(image_pil):
"""Get depth map from an image."""
try:
# Process the image with the depth estimation model
inputs = depth_processor(images=image_pil, return_tensors="pt")
with torch.no_grad():
outputs = depth_model(**inputs)
predicted_depth = outputs.predicted_depth
# Interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image_pil.size[::-1],
mode="bicubic",
align_corners=False,
)
# Convert to numpy array
depth_map = prediction.squeeze().cpu().numpy()
# Normalize depth map
depth_min = depth_map.min()
depth_max = depth_map.max()
if depth_max > depth_min:
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
else:
depth_map = np.zeros_like(depth_map)
return depth_map
except Exception as e:
print(f"Error in get_depth_map: {e}")
# Return a default depth map (gradient from top to bottom) in case of error
h, w = image_pil.size[1], image_pil.size[0]
default_depth = np.zeros((h, w), dtype=np.float32)
for i in range(h):
default_depth[i, :] = i / h
return default_depth
def process_image(input_image, blur_sigma=15, depth_blur_sigma=25):
"""Main function to process the input image."""
try:
# Input validation
if input_image is None:
print("No input image provided")
return [None, None, None, None, None]
# Convert to PIL Image if needed
if isinstance(input_image, np.ndarray):
# Make sure we have a valid image with at least 2 dimensions
if input_image.ndim < 2 or input_image.shape[0] <= 0 or input_image.shape[1] <= 0:
print("Invalid input image dimensions")
return [None, None, None, None, None]
pil_image = Image.fromarray(input_image)
else:
pil_image = input_image
input_image = np.array(pil_image)
# Get segmentation mask
print("Getting segmentation mask...")
seg_mask = get_segmentation_mask(pil_image)
# Get depth map
print("Getting depth map...")
depth_map = get_depth_map(pil_image)
# Apply gaussian blur to background
print("Applying gaussian blur...")
gaussian_result = apply_gaussian_blur(input_image, seg_mask, sigma=blur_sigma)
# Apply depth-based blur
print("Applying depth-based blur...")
depth_result = apply_depth_blur(input_image, depth_map, max_sigma=depth_blur_sigma)
# Display depth map as an image
depth_visualization = (depth_map * 255).astype(np.uint8)
depth_colored = cv2.applyColorMap(depth_visualization, cv2.COLORMAP_INFERNO)
# Display segmentation mask
seg_visualization = (seg_mask * 255).astype(np.uint8)
print("Processing complete!")
return [
input_image,
seg_visualization,
gaussian_result,
depth_colored,
depth_result
]
except Exception as e:
print(f"Error processing image: {e}")
return [None, None, None, None, None]
# Create Gradio interface
with gr.Blocks(title="Image Blur Effects with Segmentation and Depth Estimation") as demo:
gr.Markdown("# Image Blur Effects App")
gr.Markdown("This app demonstrates two types of blur effects: background blur using segmentation and depth-based lens blur.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload an image", type="numpy")
blur_sigma = gr.Slider(minimum=1, maximum=50, value=15, step=1, label="Background Blur Intensity")
depth_blur_sigma = gr.Slider(minimum=1, maximum=50, value=25, step=1, label="Depth Blur Max Intensity")
process_btn = gr.Button("Process Image")
with gr.Column():
with gr.Tab("Original Image"):
output_original = gr.Image(label="Original Image")
with gr.Tab("Segmentation Mask"):
output_segmentation = gr.Image(label="Segmentation Mask")
with gr.Tab("Background Blur"):
output_gaussian = gr.Image(label="Background Blur Result")
with gr.Tab("Depth Map"):
output_depth = gr.Image(label="Depth Map")
with gr.Tab("Depth-based Lens Blur"):
output_depth_blur = gr.Image(label="Depth-based Lens Blur Result")
process_btn.click(
fn=process_image,
inputs=[input_image, blur_sigma, depth_blur_sigma],
outputs=[output_original, output_segmentation, output_gaussian, output_depth, output_depth_blur]
)
gr.Markdown("""
## How it works
1. **Background Blur**: Uses a SegFormer model to identify foreground objects (like people) and blurs only the background
2. **Depth-based Lens Blur**: Uses a DPT depth estimation model to apply variable blur based on estimated distance
Try uploading a photo of a person against a background to see the effects!
""")
demo.launch()