panverz commited on
Commit
a4ddddf
·
verified ·
1 Parent(s): fdcc1e6

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +180 -51
app.py CHANGED
@@ -1,64 +1,193 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import openai
3
+ import os
4
+ import json
5
+ import requests
6
+ import google.generativeai as genai
7
+ from datetime import datetime
8
 
9
+ # Configure API keys
10
+ openai_api_key = "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"
11
+ together_api_key = "5183aeea800941cd193e64df325814cb9253f4a4083917335e4d4b75a12e87fd"
12
+ gemini_api_key = "AIzaSyDvZ2-im5lt0-Tundiq562lyi_cmPJxD4g"
13
 
14
+ # Configure API clients
15
+ openai.api_key = openai_api_key
16
+ genai.configure(api_key=gemini_api_key)
17
 
18
+ # Initialize conversation history
19
+ conversation_history = []
20
+ learning_data = {}
 
 
 
 
 
 
21
 
22
+ # Function to generate response using OpenAI
23
+ def generate_openai_response(message, model="gpt-3.5-turbo"):
24
+ conversation_history.append({"role": "user", "content": message})
25
+
26
+ try:
27
+ response = openai.ChatCompletion.create(
28
+ model=model,
29
+ messages=conversation_history
30
+ )
31
+
32
+ assistant_message = response.choices[0].message.content
33
+ conversation_history.append({"role": "assistant", "content": assistant_message})
34
+
35
+ # Save for learning
36
+ save_for_learning(message, assistant_message, "openai", model)
37
+
38
+ return assistant_message
39
+ except Exception as e:
40
+ return f"Error with OpenAI: {str(e)}"
41
 
42
+ # Function to generate response using Together AI
43
+ def generate_together_response(message, model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"):
44
+ conversation_history.append({"role": "user", "content": message})
45
+
46
+ try:
47
+ headers = {
48
+ "Authorization": f"Bearer {together_api_key}",
49
+ "Content-Type": "application/json"
50
+ }
51
+
52
+ data = {
53
+ "model": model,
54
+ "messages": [{"role": "user", "content": message}]
55
+ }
56
+
57
+ response = requests.post(
58
+ "https://api.together.xyz/v1/chat/completions",
59
+ headers=headers,
60
+ json=data
61
+ )
62
+
63
+ if response.status_code == 200:
64
+ result = response.json()
65
+ assistant_message = result["choices"][0]["message"]["content"]
66
+ conversation_history.append({"role": "assistant", "content": assistant_message})
67
+
68
+ # Save for learning
69
+ save_for_learning(message, assistant_message, "together", model)
70
+
71
+ return assistant_message
72
+ else:
73
+ return f"Error with Together AI: {response.text}"
74
+ except Exception as e:
75
+ return f"Error with Together AI: {str(e)}"
76
 
77
+ # Function to generate response using Google Gemini
78
+ def generate_gemini_response(message, model="gemini-1.0-pro"):
79
+ conversation_history.append({"role": "user", "content": message})
80
+
81
+ try:
82
+ gemini_model = genai.GenerativeModel(model)
83
+ response = gemini_model.generate_content(message)
84
+
85
+ assistant_message = response.text
86
+ conversation_history.append({"role": "assistant", "content": assistant_message})
87
+
88
+ # Save for learning
89
+ save_for_learning(message, assistant_message, "gemini", model)
90
+
91
+ return assistant_message
92
+ except Exception as e:
93
+ return f"Error with Google Gemini: {str(e)}"
94
 
95
+ # Function to save data for learning
96
+ def save_for_learning(user_message, assistant_message, provider, model):
97
+ timestamp = datetime.now().isoformat()
98
+
99
+ entry = {
100
+ "timestamp": timestamp,
101
+ "user_message": user_message,
102
+ "assistant_message": assistant_message,
103
+ "provider": provider,
104
+ "model": model
105
+ }
106
+
107
+ # In a real system, this would be saved to a database
108
+ # For this demo, we'll just keep it in memory
109
+ if "conversations" not in learning_data:
110
+ learning_data["conversations"] = []
111
+
112
+ learning_data["conversations"].append(entry)
113
+
114
+ # Trigger autopilot learning (in a real system, this would be a background process)
115
+ autopilot_learning()
116
 
117
+ # Function for autopilot learning
118
+ def autopilot_learning():
119
+ # In a real system, this would:
120
+ # 1. Analyze past conversations to identify knowledge gaps
121
+ # 2. Research topics to fill those gaps
122
+ # 3. Update the model's knowledge base
123
+ # 4. Improve response quality over time
124
+
125
+ # For this demo, we'll just log that learning occurred
126
+ timestamp = datetime.now().isoformat()
127
+
128
+ if "autopilot_events" not in learning_data:
129
+ learning_data["autopilot_events"] = []
130
+
131
+ learning_data["autopilot_events"].append({
132
+ "timestamp": timestamp,
133
+ "event": "Autopilot learning cycle completed",
134
+ "conversations_analyzed": len(learning_data.get("conversations", []))
135
+ })
136
 
137
+ # Function to handle chat based on selected model
138
+ def chat(message, model_choice):
139
+ if not message:
140
+ return "Please enter a message."
141
+
142
+ if model_choice == "OpenAI GPT-3.5":
143
+ return generate_openai_response(message, "gpt-3.5-turbo")
144
+ elif model_choice == "OpenAI GPT-4":
145
+ return generate_openai_response(message, "gpt-4")
146
+ elif model_choice == "Together AI Llama":
147
+ return generate_together_response(message, "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8")
148
+ elif model_choice == "Together AI Mistral":
149
+ return generate_together_response(message, "mistralai/Mistral-7B-Instruct-v0.1")
150
+ elif model_choice == "Google Gemini Pro":
151
+ return generate_gemini_response(message, "gemini-1.0-pro")
152
+ elif model_choice == "Google Gemini Flash":
153
+ return generate_gemini_response(message, "gemini-2.0-flash")
154
+ else:
155
+ return "Please select a valid model."
156
 
157
+ # Create Gradio interface
158
+ with gr.Blocks(css="footer {visibility: hidden}") as demo:
159
+ gr.Markdown("# ML Agent System with Autopilot Learning")
160
+ gr.Markdown("This system supports multiple AI models and features continuous learning in autopilot mode.")
161
+
162
+ with gr.Row():
163
+ with gr.Column(scale=4):
164
+ chatbot = gr.Chatbot(height=400)
165
+ msg = gr.Textbox(label="Type your message here", placeholder="Ask me anything...")
166
+ clear = gr.Button("Clear Conversation")
167
+
168
+ with gr.Column(scale=1):
169
+ model = gr.Radio(
170
+ ["OpenAI GPT-3.5", "OpenAI GPT-4", "Together AI Llama", "Together AI Mistral", "Google Gemini Pro", "Google Gemini Flash"],
171
+ label="Select AI Model",
172
+ value="OpenAI GPT-3.5"
173
+ )
174
+ gr.Markdown("### System Features")
175
+ gr.Markdown("- Multi-model support")
176
+ gr.Markdown("- Continuous learning")
177
+ gr.Markdown("- Autopilot research mode")
178
+ gr.Markdown("- Knowledge retention")
179
+
180
+ def respond(message, chat_history, model_choice):
181
+ if not message:
182
+ return "", chat_history
183
+
184
+ bot_message = chat(message, model_choice)
185
+ chat_history.append((message, bot_message))
186
+ return "", chat_history
187
+
188
+ msg.submit(respond, [msg, chatbot, model], [msg, chatbot])
189
+ clear.click(lambda: None, None, chatbot, queue=False)
190
 
191
+ # Launch the app
192
  if __name__ == "__main__":
193
+ demo.launch(share=True)