File size: 24,852 Bytes
be9b1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
import shutil
import uuid
from pathlib import Path
from typing import Literal, assert_never, no_type_check

import cv2
import gradio as gr
import numpy as np
import open3d as o3d
import rerun as rr
import rerun.blueprint as rrb
import torch
from einops import rearrange
from gradio_rerun import Rerun
from jaxtyping import Bool, Float, Float32, Int, UInt8, UInt16
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.sam2_video_predictor import SAM2VideoPredictor
from simplecv.camera_parameters import PinholeParameters
from simplecv.conversion_utils import save_to_nerfstudio
from simplecv.data.exoego.assembly_101 import Assembely101Sequence
from simplecv.data.exoego.hocap import ExoCameraIDs, HOCapSequence
from simplecv.ops.triangulate import batch_triangulate, projectN3
from simplecv.ops.tsdf_depth_fuser import Open3DFuser
from simplecv.video_io import MultiVideoReader

from annotation_example.gradio_ui.mv_sam_callbacks import (
    KeypointsContainer,
    RerunLogPaths,
    get_recording,
    update_keypoints,
)

if gr.NO_RELOAD:
    VIDEO_SAM_PREDICTOR: SAM2VideoPredictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-tiny")
    IMG_SAM_PREDICTOR: SAM2ImagePredictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny")


def create_blueprint(exo_video_log_paths: list[Path], num_videos_to_log: Literal[4, 8] = 8) -> rrb.Blueprint:
    active_tab: int = 0  # 0 for video, 1 for images
    main_view = rrb.Vertical(
        contents=[
            rrb.Spatial3DView(
                origin="/",
            ),
            # take the first 4 video files
            rrb.Horizontal(
                contents=[
                    rrb.Tabs(
                        rrb.Spatial2DView(origin=f"{video_log_path.parent}"),
                        rrb.Spatial2DView(
                            origin=f"{video_log_path}".replace("video", "depth"),
                        ),
                        active_tab=active_tab,
                    )
                    for video_log_path in exo_video_log_paths[:4]
                ]
            ),
        ],
        row_shares=[3, 1],
    )
    additional_views = rrb.Vertical(
        contents=[
            rrb.Tabs(
                rrb.Spatial2DView(origin=f"{video_log_path.parent}"),
                rrb.Spatial2DView(origin=f"{video_log_path}".replace("video", "depth")),
                active_tab=active_tab,
            )
            for video_log_path in exo_video_log_paths[4:]
        ]
    )
    # do the last 4 videos
    contents = [main_view]
    if num_videos_to_log == 8:
        contents.append(additional_views)

    blueprint = rrb.Blueprint(
        rrb.Horizontal(
            contents=contents,
            column_shares=[4, 1],
        ),
        collapse_panels=True,
    )
    return blueprint


def log_pinhole_rec(
    rec: rr.RecordingStream,
    camera: PinholeParameters,
    cam_log_path: Path,
    image_plane_distance: float = 0.5,
    static: bool = False,
) -> None:
    """
    Logs the pinhole camera parameters and transformation data.

    Parameters:
    camera (PinholeParameters): The pinhole camera parameters including intrinsics and extrinsics.
    cam_log_path (Path): The path where the camera log will be saved.
    image_plane_distance (float, optional): The distance of the image plane from the camera. Defaults to 0.5.
    static (bool, optional): If True, the log data will be marked as static. Defaults to False.

    Returns:
    None
    """
    # camera intrinsics
    rec.log(
        f"{cam_log_path}/pinhole",
        rr.Pinhole(
            image_from_camera=camera.intrinsics.k_matrix,
            height=camera.intrinsics.height,
            width=camera.intrinsics.width,
            camera_xyz=getattr(
                rr.ViewCoordinates,
                camera.intrinsics.camera_conventions,
            ),
            image_plane_distance=image_plane_distance,
        ),
        static=static,
    )
    # camera extrinsics
    rec.log(
        f"{cam_log_path}",
        rr.Transform3D(
            translation=camera.extrinsics.cam_t_world,
            mat3x3=camera.extrinsics.cam_R_world,
            from_parent=True,
        ),
        static=static,
    )


def log_video_rec(
    rec: rr.RecordingStream,
    video_path: Path,
    video_log_path: Path,
    timeline: str = "video_time",
) -> Int[np.ndarray, "num_frames"]:
    """
    Logs a video asset and its frame timestamps.

    Parameters:
    video_path (Path): The path to the video file.
    video_log_path (Path): The path where the video log will be saved.

    Returns:
    None
    """
    # Log video asset which is referred to by frame references.
    video_asset = rr.AssetVideo(path=video_path)
    rec.log(str(video_log_path), video_asset, static=True)

    # Send automatically determined video frame timestamps.
    frame_timestamps_ns: Int[np.ndarray, "num_frames"] = (  # noqa: UP037
        video_asset.read_frame_timestamps_ns()
    )
    rec.send_columns(
        f"{video_log_path}",
        # Note timeline values don't have to be the same as the video timestamps.
        indexes=[rr.TimeNanosColumn(timeline, frame_timestamps_ns)],
        columns=rr.VideoFrameReference.columns_nanoseconds(frame_timestamps_ns),
    )
    return frame_timestamps_ns


def rescale_img(img_hw3: UInt8[np.ndarray, "h w 3"], max_dim: int) -> UInt8[np.ndarray, "... 3"]:
    # resize the image to have a max dim of max_dim
    height, width, _ = img_hw3.shape
    current_dim = max(height, width)

    # If current dimension is larger than max_dim, calculate scale factor
    if current_dim > max_dim:
        scale_factor = max_dim / current_dim
        new_height = int(height * scale_factor)
        new_width = int(width * scale_factor)

        # Resize image maintaining aspect ratio
        resized_img = cv2.resize(img_hw3, (new_width, new_height), interpolation=cv2.INTER_AREA)
        return resized_img

    # Return original image if no resize needed
    return img_hw3


@no_type_check
def reset_keypoints(
    active_recording_id: uuid.UUID, mv_keypoint_dict: dict[str, KeypointsContainer], log_paths: RerunLogPaths
):
    yield from _reset_keypoints(
        active_recording_id=active_recording_id,
        mv_keypoint_dict=mv_keypoint_dict,
        log_paths=log_paths,
    )


def _reset_keypoints(
    active_recording_id: uuid.UUID, mv_keypoint_dict: dict[str, KeypointsContainer], log_paths: RerunLogPaths
):
    # Now we can produce a valid keypoint.
    rec: rr.RecordingStream = get_recording(active_recording_id)
    stream: rr.BinaryStream = rec.binary_stream()

    mv_keypoint_dict: dict[str, KeypointsContainer] = {
        cam_name: KeypointsContainer.empty() for cam_name in mv_keypoint_dict
    }

    rec.set_time_nanos(log_paths["timeline_name"], nanos=0)
    # Log include points if any exist
    for cam_log_path in log_paths["cam_log_path_list"]:
        pinhole_path: Path = cam_log_path / "pinhole"
        print(pinhole_path)
        rec.log(
            f"{pinhole_path}/video/include",
            rr.Clear(recursive=True),
        )
        rec.log(
            f"{pinhole_path}/video/exclude",
            rr.Clear(recursive=True),
        )
        rec.log(
            f"{pinhole_path}/video/bbox",
            rr.Clear(recursive=True),
        )
        rec.log(
            f"{pinhole_path}/video/bbox_center",
            rr.Clear(recursive=True),
        )
        rec.log(
            f"{pinhole_path}/segmentation",
            rr.Clear(recursive=True),
        )
        rec.log(
            f"{pinhole_path}/depth",
            rr.Clear(recursive=True),
        )

    rec.log(
        f"{log_paths['parent_log_path']}/triangulated",
        rr.Clear(recursive=True),
    )

    # Ensure we consume everything from the recording.
    stream.flush()
    yield stream.read(), mv_keypoint_dict, {}


@no_type_check
def get_initial_mask(
    recording_id: uuid.UUID,
    inference_state: dict,
    mv_keypoints_dict: dict[str, KeypointsContainer],
    log_paths: RerunLogPaths,
    rgb_list: list[UInt8[np.ndarray, "h w 3"]],
    keypoint_centers_dict: dict[str, Float32[np.ndarray, "3"]],
):
    yield from _get_initial_mask(
        recording_id=recording_id,
        inference_state=inference_state,
        mv_keypoints_dict=mv_keypoints_dict,
        log_paths=log_paths,
        rgb_list=rgb_list,
        keypoint_centers_dict=keypoint_centers_dict,
    )


def _get_initial_mask(
    recording_id: uuid.UUID,
    inference_state: dict,
    mv_keypoints_dict: dict[str, KeypointsContainer],
    log_paths: RerunLogPaths,
    rgb_list: list[UInt8[np.ndarray, "h w 3"]],
    keypoint_centers_dict: dict[str, Float32[np.ndarray, "3"]],
):
    rec = get_recording(recording_id)
    stream = rec.binary_stream()

    rec.set_time_nanos(log_paths["timeline_name"], nanos=0)

    for (cam_name, keypoint_container), rgb in zip(mv_keypoints_dict.items(), rgb_list, strict=True):
        IMG_SAM_PREDICTOR.set_image(rgb)
        pinhole_log_path: Path = log_paths["parent_log_path"] / cam_name / "pinhole"
        points: Float32[np.ndarray, "num_points 2"] = np.vstack(
            [keypoint_container.include_points, keypoint_container.exclude_points]
        ).astype(np.float32)
        if points.shape[0] == 0:
            IMG_SAM_PREDICTOR.reset_predictor()
            rec.log(
                "logs",
                rr.TextLog("No points selected, skipping segmentation.", level="info"),
            )
        else:
            # Create labels array: 1 for include points, 0 for exclude points
            labels: Int[np.ndarray, "num_points"] = np.ones(len(keypoint_container.include_points), dtype=np.int32)  # noqa: UP037
            if len(keypoint_container.exclude_points) > 0:
                labels = np.concatenate([labels, np.zeros(len(keypoint_container.exclude_points), dtype=np.int32)])

            with torch.inference_mode():
                masks, scores, _ = IMG_SAM_PREDICTOR.predict(
                    point_coords=points,
                    point_labels=labels,
                    multimask_output=False,
                )
                masks: Bool[np.ndarray, "1 h w"] = masks > 0.0

            rec.log(
                f"{pinhole_log_path}/segmentation",
                rr.SegmentationImage(masks[0].astype(np.uint8)),
            )
            # Convert the mask to a bounding box
            if masks[0].any():
                y_min, y_max = np.where(masks[0].any(axis=1))[0][[0, -1]]
                x_min, x_max = np.where(masks[0].any(axis=0))[0][[0, -1]]
                bbox = np.array([x_min, y_min, x_max, y_max], dtype=np.float32)
                rec.log(
                    f"{pinhole_log_path}/video/bbox",
                    rr.Boxes2D(array=bbox, array_format=rr.Box2DFormat.XYXY, colors=(0, 0, 255)),
                )

                # Calculate the center of the bounding box
                center_xyc: Float32[np.ndarray, "3"] = np.array(  # noqa: UP037
                    [(x_min + x_max) / 2, (y_min + y_max) / 2, 1], dtype=np.float32
                )
                rec.log(
                    f"{pinhole_log_path}/video/bbox_center",
                    rr.Points2D(positions=(center_xyc[0], center_xyc[1]), colors=(0, 0, 255), radii=5),
                )
                keypoint_centers_dict[cam_name] = center_xyc
            IMG_SAM_PREDICTOR.reset_predictor()

        yield stream.read(), keypoint_centers_dict


@no_type_check
def triangulate_centers(
    recording_id: uuid.UUID,
    center_xyc_dict: dict[str, Float32[np.ndarray, "3"]],
    exo_cam_list: list[PinholeParameters],
    log_paths: RerunLogPaths,
    rgb_list: list[UInt8[np.ndarray, "h w 3"]],
):
    yield from _triangulate_centers(
        recording_id=recording_id,
        center_xyc_dict=center_xyc_dict,
        exo_cam_list=exo_cam_list,
        log_paths=log_paths,
        rgb_list=rgb_list,
    )


def _triangulate_centers(
    recording_id: uuid.UUID,
    center_xyc_dict: dict[str, Float32[np.ndarray, "3"]],
    exo_cam_list: list[PinholeParameters],
    log_paths: RerunLogPaths,
    rgb_list: list[UInt8[np.ndarray, "h w 3"]],
):
    rec = get_recording(recording_id)
    stream = rec.binary_stream()

    masks_list: list[UInt8[np.ndarray, "h w"]] = []

    rec.set_time_nanos(log_paths["timeline_name"], nanos=0)
    if len(center_xyc_dict) >= 2:
        centers_xyc: Float32[np.ndarray, "num_views 3"] = np.stack(
            [center_xyc for center_xyc in center_xyc_dict.values() if center_xyc is not None], axis=0
        ).astype(np.float32)
        centers_xyc = rearrange(centers_xyc, "num_views xyc -> num_views 1 xyc")
        proj_matrices: list[Float32[np.ndarray, "3 4"]] = [
            exo_cam.projection_matrix.astype(np.float32) for exo_cam in exo_cam_list
        ]
        proj_matrices: Float32[np.ndarray, "num_views 3 4"] = np.stack(proj_matrices, axis=0).astype(np.float32)

        proj_matrices_filtered: list[Float32[np.ndarray, "3 4"]] = [
            exo_cam.projection_matrix.astype(np.float32) for exo_cam in exo_cam_list if exo_cam.name in center_xyc_dict
        ]
        proj_matrices_filtered: Float32[np.ndarray, "num_views 3 4"] = np.stack(proj_matrices_filtered, axis=0).astype(
            np.float32
        )
        xyzc: Float[np.ndarray, "n_points 4"] = batch_triangulate(
            keypoints_2d=centers_xyc, projection_matrices=proj_matrices_filtered
        )
        rec.log(
            f"{log_paths['parent_log_path']}/triangulated", rr.Points3D(xyzc[:, 0:3], colors=(0, 0, 255), radii=0.1)
        )

        projected_xyc = projectN3(
            xyzc,
            proj_matrices,
        )

        for rgb, cam_log_path, xyc in zip(rgb_list, log_paths["cam_log_path_list"], projected_xyc, strict=True):
            pinhole_log_path: Path = cam_log_path / "pinhole"
            xy = xyc[:, 0:2]
            rec.log(
                f"{pinhole_log_path}/video/bbox_center",
                rr.Points2D(positions=xy, colors=(0, 0, 255), radii=5),
            )
            IMG_SAM_PREDICTOR.set_image(rgb)
            labels: Int[np.ndarray, "num_points"] = np.ones(len(xyc), dtype=np.int32)  # noqa: UP037
            with torch.inference_mode():
                masks, scores, _ = IMG_SAM_PREDICTOR.predict(
                    point_coords=xy,
                    point_labels=labels,
                    multimask_output=False,
                )
                masks: Bool[np.ndarray, "1 h w"] = masks > 0.0

            mask = masks[0].astype(np.uint8)
            masks_list.append(mask)
            rec.log(
                f"{pinhole_log_path}/segmentation",
                rr.SegmentationImage(mask),
            )
            if mask.any():
                y_min, y_max = np.where(masks[0].any(axis=1))[0][[0, -1]]
                x_min, x_max = np.where(masks[0].any(axis=0))[0][[0, -1]]
                bbox = np.array([x_min, y_min, x_max, y_max], dtype=np.float32)
                rec.log(
                    f"{pinhole_log_path}/video/bbox",
                    rr.Boxes2D(array=bbox, array_format=rr.Box2DFormat.XYXY, colors=(0, 0, 255)),
                )

                # Calculate the center of the bounding box
                center_xyc: Float32[np.ndarray, "3"] = np.array(  # noqa: UP037
                    [(x_min + x_max) / 2, (y_min + y_max) / 2, 1], dtype=np.float32
                )
                rec.log(
                    f"{pinhole_log_path}/video/bbox_center",
                    rr.Points2D(positions=(center_xyc[0], center_xyc[1]), colors=(0, 0, 255), radii=5),
                )
            IMG_SAM_PREDICTOR.reset_predictor()

    else:
        rec.log(
            "logs",
            rr.TextLog("No points selected, skipping segmentation.", level="info"),
        )
        gr.Info("Not enough points to triangulate.")
    yield stream.read(), masks_list


@no_type_check
def log_dataset(dataset_name: Literal["hocap", "assembly101"]):
    yield from _log_dataset(dataset_name)


def _log_dataset(dataset_name: Literal["hocap", "assembly101"]):
    recording_id: uuid.UUID = uuid.uuid4()
    rec: rr.RecordingStream = get_recording(recording_id)
    stream: rr.BinaryStream = rec.binary_stream()

    match dataset_name:
        case "hocap":
            sequence: HOCapSequence = HOCapSequence(
                data_path=Path("data/hocap/sample"),
                sequence_name="20231024_180733",
                subject_id="8",
                load_labels=False,
            )
        case "assembly101":
            # raise NotImplementedError("Assembly101 is not implemented yet.")
            sequence: Assembely101Sequence = Assembely101Sequence(
                data_path=Path("data/assembly101-sample"),
                sequence_name="nusar-2021_action_both_9015-b05b_9015_user_id_2021-02-02_161800",
                subject_id=None,
                load_labels=False,
            )
        case _:
            assert_never(dataset_name)

    parent_log_path: Path = Path("world")
    timeline_name: str = "frame_idx"

    images_to_log: int = 8

    exo_video_readers: MultiVideoReader = sequence.exo_video_readers
    # exo_video_files: list[Path] = exo_video_readers.video_paths[0:images_to_log]
    exo_cam_log_paths: list[Path] = [parent_log_path / exo_cam.name for exo_cam in sequence.exo_cam_list][
        0:images_to_log
    ]
    exo_video_log_paths: list[Path] = [cam_log_paths / "pinhole" / "video" for cam_log_paths in exo_cam_log_paths][
        0:images_to_log
    ]

    initial_blueprint = create_blueprint(exo_video_log_paths, num_videos_to_log=8)
    rec.send_blueprint(initial_blueprint)
    rec.log("/", sequence.world_coordinate_system, static=True)

    bgr_list: list[UInt8[np.ndarray, "h w 3"]] = exo_video_readers[0][0:images_to_log]
    rgb_list: list[UInt8[np.ndarray, "h w 3"]] = [cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) for bgr in bgr_list]
    # check if depth images exist
    if not sequence.depth_paths:
        depth_paths = None
    else:
        depth_paths: dict[ExoCameraIDs, Path] = sequence.depth_paths[0]
    exo_cam_list: list[PinholeParameters] = sequence.exo_cam_list[0:images_to_log]

    cam_log_path_list: list[Path] = []
    fuser = Open3DFuser(fusion_resolution=0.01, max_fusion_depth=1.25)
    # log stationary exo cameras and video assets
    for exo_cam in exo_cam_list:
        cam_log_path: Path = parent_log_path / exo_cam.name
        cam_log_path_list.append(cam_log_path)
        image_plane_distance: float = 0.1 if dataset_name == "hocap" else 100.0
        log_pinhole_rec(
            rec=rec,
            camera=exo_cam,
            cam_log_path=cam_log_path,
            image_plane_distance=image_plane_distance,
            static=True,
        )

    for rgb, cam_log_path, exo_cam in zip(rgb_list, cam_log_path_list, exo_cam_list, strict=True):
        pinhole_log_path: Path = cam_log_path / "pinhole"
        rec.log(f"{pinhole_log_path}/video", rr.Image(rgb, color_model=rr.ColorModel.RGB), static=True)
        # rec.log(f"{pinhole_log_path}/depth", rr.DepthImage(depth_image, meter=1000))
        if depth_paths is not None:
            depth_path: Path = depth_paths[cam_log_path.name]
            depth_image: UInt16[np.ndarray, "480 640"] = cv2.imread(str(depth_path), cv2.IMREAD_ANYDEPTH)
            fuser.fuse_frames(
                depth_image,
                exo_cam.intrinsics.k_matrix,
                exo_cam.extrinsics.cam_T_world,
                rgb,
            )

    if depth_paths is not None:
        mesh: o3d.geometry.TriangleMesh = fuser.get_mesh()
        mesh.compute_vertex_normals()

        rec.log(
            f"{parent_log_path}/mesh",
            rr.Mesh3D(
                vertex_positions=mesh.vertices,
                triangle_indices=mesh.triangles,
                vertex_normals=mesh.vertex_normals,
                vertex_colors=mesh.vertex_colors,
            ),
            static=True,
        )

        pcd: o3d.geometry.PointCloud = mesh.sample_points_poisson_disk(
            number_of_points=20_000,
        )

    log_paths = RerunLogPaths(
        timeline_name=timeline_name,
        parent_log_path=parent_log_path,
        cam_log_path_list=cam_log_path_list,
    )

    mv_keypoint_dict: dict[str, KeypointsContainer] = {
        cam_log_path.name: KeypointsContainer.empty() for cam_log_path in cam_log_path_list
    }

    yield stream.read(), recording_id, log_paths, mv_keypoint_dict, rgb_list, exo_cam_list, pcd


def handle_export(
    exo_cam_list: list[PinholeParameters],
    rgb_list: list[UInt8[np.ndarray, "h w 3"]],
    masks_list: list[UInt8[np.ndarray, "h w"]],
    pointcloud: o3d.geometry.PointCloud,
):
    bgr_list: list[UInt8[np.ndarray, "h w 3"]] = [cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR) for rgb in rgb_list]
    ns_save_dir: Path = Path("data/nerfstudio-export")
    masks_list: list[UInt8[np.ndarray, "h w"]] | None = masks_list if len(masks_list) > 0 else None
    save_to_nerfstudio(
        ns_save_path=ns_save_dir,
        pinhole_param_list=exo_cam_list,
        bgr_list=bgr_list,
        pointcloud=pointcloud,
        masks_list=masks_list,
    )

    # Define the path for the output zip file
    zip_output_path = Path("data/nerfstudio-output")
    zip_file_path: str = shutil.make_archive(str(zip_output_path), "zip", str(ns_save_dir))

    # Return the path to the zip file and switch tabs
    return gr.Tabs(selected=1), zip_file_path


with gr.Blocks() as mv_sam_block:
    mv_keypoint_dict: dict[str, KeypointsContainer] | gr.State = gr.State({})
    inference_state: dict | gr.State = gr.State({})
    rgb_list: list[UInt8[np.ndarray, "h w 3"]] | gr.State = gr.State()
    masks_list: list[UInt8[np.ndarray, "h w"]] | gr.State = gr.State([])
    exo_cam_list: list[PinholeParameters] | gr.State = gr.State([])
    pointcloud: o3d.geometry.PointCloud | gr.State = gr.State()
    centers_xyc_dict: dict[str, Float32[np.ndarray, "3"]] | gr.State = gr.State({})

    with gr.Row():
        with gr.Tabs() as main_tabs:
            with gr.TabItem("Controls", id=0):
                with gr.Column(scale=1):
                    dataset_dropdown = gr.Dropdown(
                        label="Dataset",
                        choices=["hocap", "assembly101"],
                        value="hocap",
                    )
                    load_dataset_btn = gr.Button("Load Dataset")

                    point_type = gr.Radio(
                        label="point type",
                        choices=["include", "exclude"],
                        value="include",
                        scale=1,
                    )
                    clear_points_btn = gr.Button("Clear Points", scale=1)
                    get_initial_mask_btn = gr.Button("Get Initial Mask", scale=1)
                    triangulate_btn = gr.Button("Triangulate Center", scale=1)
                    export_btn = gr.Button("Export", scale=1)
            with gr.TabItem("Output", id=1):
                gr.Markdown("here you can see the output of the selected video")
                output_zip = gr.File(label="Exported Zip File", file_count="single", type="filepath")
        with gr.Column(scale=4):
            viewer = Rerun(
                streaming=True,
                panel_states={
                    "time": "collapsed",
                    "blueprint": "hidden",
                    "selection": "hidden",
                },
                height=700,
            )

    # We make a new recording id, and store it in a Gradio's session state.
    recording_id = gr.State()
    log_paths = gr.State({})

    load_dataset_btn.click(
        fn=log_dataset,
        inputs=[dataset_dropdown],
        outputs=[viewer, recording_id, log_paths, mv_keypoint_dict, rgb_list, exo_cam_list, pointcloud],
    )

    viewer.selection_change(
        update_keypoints,
        inputs=[
            recording_id,
            point_type,
            mv_keypoint_dict,
            log_paths,
        ],
        outputs=[viewer, mv_keypoint_dict],
    )

    clear_points_btn.click(
        fn=reset_keypoints,
        inputs=[recording_id, mv_keypoint_dict, log_paths],
        outputs=[viewer, mv_keypoint_dict, centers_xyc_dict],
    )

    get_initial_mask_btn.click(
        fn=get_initial_mask,
        inputs=[recording_id, inference_state, mv_keypoint_dict, log_paths, rgb_list, centers_xyc_dict],
        outputs=[viewer, centers_xyc_dict],
    )

    triangulate_btn.click(
        fn=triangulate_centers,
        inputs=[recording_id, centers_xyc_dict, exo_cam_list, log_paths, rgb_list],
        outputs=[viewer, masks_list],
    )
    # TODO export masks + ply + camera poses for use with brush
    export_btn.click(
        fn=handle_export,
        inputs=[exo_cam_list, rgb_list, masks_list, pointcloud],
        outputs=[main_tabs, output_zip],
    )