Spaces:
Runtime error
Runtime error
File size: 24,852 Bytes
be9b1db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import shutil
import uuid
from pathlib import Path
from typing import Literal, assert_never, no_type_check
import cv2
import gradio as gr
import numpy as np
import open3d as o3d
import rerun as rr
import rerun.blueprint as rrb
import torch
from einops import rearrange
from gradio_rerun import Rerun
from jaxtyping import Bool, Float, Float32, Int, UInt8, UInt16
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.sam2_video_predictor import SAM2VideoPredictor
from simplecv.camera_parameters import PinholeParameters
from simplecv.conversion_utils import save_to_nerfstudio
from simplecv.data.exoego.assembly_101 import Assembely101Sequence
from simplecv.data.exoego.hocap import ExoCameraIDs, HOCapSequence
from simplecv.ops.triangulate import batch_triangulate, projectN3
from simplecv.ops.tsdf_depth_fuser import Open3DFuser
from simplecv.video_io import MultiVideoReader
from annotation_example.gradio_ui.mv_sam_callbacks import (
KeypointsContainer,
RerunLogPaths,
get_recording,
update_keypoints,
)
if gr.NO_RELOAD:
VIDEO_SAM_PREDICTOR: SAM2VideoPredictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-tiny")
IMG_SAM_PREDICTOR: SAM2ImagePredictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny")
def create_blueprint(exo_video_log_paths: list[Path], num_videos_to_log: Literal[4, 8] = 8) -> rrb.Blueprint:
active_tab: int = 0 # 0 for video, 1 for images
main_view = rrb.Vertical(
contents=[
rrb.Spatial3DView(
origin="/",
),
# take the first 4 video files
rrb.Horizontal(
contents=[
rrb.Tabs(
rrb.Spatial2DView(origin=f"{video_log_path.parent}"),
rrb.Spatial2DView(
origin=f"{video_log_path}".replace("video", "depth"),
),
active_tab=active_tab,
)
for video_log_path in exo_video_log_paths[:4]
]
),
],
row_shares=[3, 1],
)
additional_views = rrb.Vertical(
contents=[
rrb.Tabs(
rrb.Spatial2DView(origin=f"{video_log_path.parent}"),
rrb.Spatial2DView(origin=f"{video_log_path}".replace("video", "depth")),
active_tab=active_tab,
)
for video_log_path in exo_video_log_paths[4:]
]
)
# do the last 4 videos
contents = [main_view]
if num_videos_to_log == 8:
contents.append(additional_views)
blueprint = rrb.Blueprint(
rrb.Horizontal(
contents=contents,
column_shares=[4, 1],
),
collapse_panels=True,
)
return blueprint
def log_pinhole_rec(
rec: rr.RecordingStream,
camera: PinholeParameters,
cam_log_path: Path,
image_plane_distance: float = 0.5,
static: bool = False,
) -> None:
"""
Logs the pinhole camera parameters and transformation data.
Parameters:
camera (PinholeParameters): The pinhole camera parameters including intrinsics and extrinsics.
cam_log_path (Path): The path where the camera log will be saved.
image_plane_distance (float, optional): The distance of the image plane from the camera. Defaults to 0.5.
static (bool, optional): If True, the log data will be marked as static. Defaults to False.
Returns:
None
"""
# camera intrinsics
rec.log(
f"{cam_log_path}/pinhole",
rr.Pinhole(
image_from_camera=camera.intrinsics.k_matrix,
height=camera.intrinsics.height,
width=camera.intrinsics.width,
camera_xyz=getattr(
rr.ViewCoordinates,
camera.intrinsics.camera_conventions,
),
image_plane_distance=image_plane_distance,
),
static=static,
)
# camera extrinsics
rec.log(
f"{cam_log_path}",
rr.Transform3D(
translation=camera.extrinsics.cam_t_world,
mat3x3=camera.extrinsics.cam_R_world,
from_parent=True,
),
static=static,
)
def log_video_rec(
rec: rr.RecordingStream,
video_path: Path,
video_log_path: Path,
timeline: str = "video_time",
) -> Int[np.ndarray, "num_frames"]:
"""
Logs a video asset and its frame timestamps.
Parameters:
video_path (Path): The path to the video file.
video_log_path (Path): The path where the video log will be saved.
Returns:
None
"""
# Log video asset which is referred to by frame references.
video_asset = rr.AssetVideo(path=video_path)
rec.log(str(video_log_path), video_asset, static=True)
# Send automatically determined video frame timestamps.
frame_timestamps_ns: Int[np.ndarray, "num_frames"] = ( # noqa: UP037
video_asset.read_frame_timestamps_ns()
)
rec.send_columns(
f"{video_log_path}",
# Note timeline values don't have to be the same as the video timestamps.
indexes=[rr.TimeNanosColumn(timeline, frame_timestamps_ns)],
columns=rr.VideoFrameReference.columns_nanoseconds(frame_timestamps_ns),
)
return frame_timestamps_ns
def rescale_img(img_hw3: UInt8[np.ndarray, "h w 3"], max_dim: int) -> UInt8[np.ndarray, "... 3"]:
# resize the image to have a max dim of max_dim
height, width, _ = img_hw3.shape
current_dim = max(height, width)
# If current dimension is larger than max_dim, calculate scale factor
if current_dim > max_dim:
scale_factor = max_dim / current_dim
new_height = int(height * scale_factor)
new_width = int(width * scale_factor)
# Resize image maintaining aspect ratio
resized_img = cv2.resize(img_hw3, (new_width, new_height), interpolation=cv2.INTER_AREA)
return resized_img
# Return original image if no resize needed
return img_hw3
@no_type_check
def reset_keypoints(
active_recording_id: uuid.UUID, mv_keypoint_dict: dict[str, KeypointsContainer], log_paths: RerunLogPaths
):
yield from _reset_keypoints(
active_recording_id=active_recording_id,
mv_keypoint_dict=mv_keypoint_dict,
log_paths=log_paths,
)
def _reset_keypoints(
active_recording_id: uuid.UUID, mv_keypoint_dict: dict[str, KeypointsContainer], log_paths: RerunLogPaths
):
# Now we can produce a valid keypoint.
rec: rr.RecordingStream = get_recording(active_recording_id)
stream: rr.BinaryStream = rec.binary_stream()
mv_keypoint_dict: dict[str, KeypointsContainer] = {
cam_name: KeypointsContainer.empty() for cam_name in mv_keypoint_dict
}
rec.set_time_nanos(log_paths["timeline_name"], nanos=0)
# Log include points if any exist
for cam_log_path in log_paths["cam_log_path_list"]:
pinhole_path: Path = cam_log_path / "pinhole"
print(pinhole_path)
rec.log(
f"{pinhole_path}/video/include",
rr.Clear(recursive=True),
)
rec.log(
f"{pinhole_path}/video/exclude",
rr.Clear(recursive=True),
)
rec.log(
f"{pinhole_path}/video/bbox",
rr.Clear(recursive=True),
)
rec.log(
f"{pinhole_path}/video/bbox_center",
rr.Clear(recursive=True),
)
rec.log(
f"{pinhole_path}/segmentation",
rr.Clear(recursive=True),
)
rec.log(
f"{pinhole_path}/depth",
rr.Clear(recursive=True),
)
rec.log(
f"{log_paths['parent_log_path']}/triangulated",
rr.Clear(recursive=True),
)
# Ensure we consume everything from the recording.
stream.flush()
yield stream.read(), mv_keypoint_dict, {}
@no_type_check
def get_initial_mask(
recording_id: uuid.UUID,
inference_state: dict,
mv_keypoints_dict: dict[str, KeypointsContainer],
log_paths: RerunLogPaths,
rgb_list: list[UInt8[np.ndarray, "h w 3"]],
keypoint_centers_dict: dict[str, Float32[np.ndarray, "3"]],
):
yield from _get_initial_mask(
recording_id=recording_id,
inference_state=inference_state,
mv_keypoints_dict=mv_keypoints_dict,
log_paths=log_paths,
rgb_list=rgb_list,
keypoint_centers_dict=keypoint_centers_dict,
)
def _get_initial_mask(
recording_id: uuid.UUID,
inference_state: dict,
mv_keypoints_dict: dict[str, KeypointsContainer],
log_paths: RerunLogPaths,
rgb_list: list[UInt8[np.ndarray, "h w 3"]],
keypoint_centers_dict: dict[str, Float32[np.ndarray, "3"]],
):
rec = get_recording(recording_id)
stream = rec.binary_stream()
rec.set_time_nanos(log_paths["timeline_name"], nanos=0)
for (cam_name, keypoint_container), rgb in zip(mv_keypoints_dict.items(), rgb_list, strict=True):
IMG_SAM_PREDICTOR.set_image(rgb)
pinhole_log_path: Path = log_paths["parent_log_path"] / cam_name / "pinhole"
points: Float32[np.ndarray, "num_points 2"] = np.vstack(
[keypoint_container.include_points, keypoint_container.exclude_points]
).astype(np.float32)
if points.shape[0] == 0:
IMG_SAM_PREDICTOR.reset_predictor()
rec.log(
"logs",
rr.TextLog("No points selected, skipping segmentation.", level="info"),
)
else:
# Create labels array: 1 for include points, 0 for exclude points
labels: Int[np.ndarray, "num_points"] = np.ones(len(keypoint_container.include_points), dtype=np.int32) # noqa: UP037
if len(keypoint_container.exclude_points) > 0:
labels = np.concatenate([labels, np.zeros(len(keypoint_container.exclude_points), dtype=np.int32)])
with torch.inference_mode():
masks, scores, _ = IMG_SAM_PREDICTOR.predict(
point_coords=points,
point_labels=labels,
multimask_output=False,
)
masks: Bool[np.ndarray, "1 h w"] = masks > 0.0
rec.log(
f"{pinhole_log_path}/segmentation",
rr.SegmentationImage(masks[0].astype(np.uint8)),
)
# Convert the mask to a bounding box
if masks[0].any():
y_min, y_max = np.where(masks[0].any(axis=1))[0][[0, -1]]
x_min, x_max = np.where(masks[0].any(axis=0))[0][[0, -1]]
bbox = np.array([x_min, y_min, x_max, y_max], dtype=np.float32)
rec.log(
f"{pinhole_log_path}/video/bbox",
rr.Boxes2D(array=bbox, array_format=rr.Box2DFormat.XYXY, colors=(0, 0, 255)),
)
# Calculate the center of the bounding box
center_xyc: Float32[np.ndarray, "3"] = np.array( # noqa: UP037
[(x_min + x_max) / 2, (y_min + y_max) / 2, 1], dtype=np.float32
)
rec.log(
f"{pinhole_log_path}/video/bbox_center",
rr.Points2D(positions=(center_xyc[0], center_xyc[1]), colors=(0, 0, 255), radii=5),
)
keypoint_centers_dict[cam_name] = center_xyc
IMG_SAM_PREDICTOR.reset_predictor()
yield stream.read(), keypoint_centers_dict
@no_type_check
def triangulate_centers(
recording_id: uuid.UUID,
center_xyc_dict: dict[str, Float32[np.ndarray, "3"]],
exo_cam_list: list[PinholeParameters],
log_paths: RerunLogPaths,
rgb_list: list[UInt8[np.ndarray, "h w 3"]],
):
yield from _triangulate_centers(
recording_id=recording_id,
center_xyc_dict=center_xyc_dict,
exo_cam_list=exo_cam_list,
log_paths=log_paths,
rgb_list=rgb_list,
)
def _triangulate_centers(
recording_id: uuid.UUID,
center_xyc_dict: dict[str, Float32[np.ndarray, "3"]],
exo_cam_list: list[PinholeParameters],
log_paths: RerunLogPaths,
rgb_list: list[UInt8[np.ndarray, "h w 3"]],
):
rec = get_recording(recording_id)
stream = rec.binary_stream()
masks_list: list[UInt8[np.ndarray, "h w"]] = []
rec.set_time_nanos(log_paths["timeline_name"], nanos=0)
if len(center_xyc_dict) >= 2:
centers_xyc: Float32[np.ndarray, "num_views 3"] = np.stack(
[center_xyc for center_xyc in center_xyc_dict.values() if center_xyc is not None], axis=0
).astype(np.float32)
centers_xyc = rearrange(centers_xyc, "num_views xyc -> num_views 1 xyc")
proj_matrices: list[Float32[np.ndarray, "3 4"]] = [
exo_cam.projection_matrix.astype(np.float32) for exo_cam in exo_cam_list
]
proj_matrices: Float32[np.ndarray, "num_views 3 4"] = np.stack(proj_matrices, axis=0).astype(np.float32)
proj_matrices_filtered: list[Float32[np.ndarray, "3 4"]] = [
exo_cam.projection_matrix.astype(np.float32) for exo_cam in exo_cam_list if exo_cam.name in center_xyc_dict
]
proj_matrices_filtered: Float32[np.ndarray, "num_views 3 4"] = np.stack(proj_matrices_filtered, axis=0).astype(
np.float32
)
xyzc: Float[np.ndarray, "n_points 4"] = batch_triangulate(
keypoints_2d=centers_xyc, projection_matrices=proj_matrices_filtered
)
rec.log(
f"{log_paths['parent_log_path']}/triangulated", rr.Points3D(xyzc[:, 0:3], colors=(0, 0, 255), radii=0.1)
)
projected_xyc = projectN3(
xyzc,
proj_matrices,
)
for rgb, cam_log_path, xyc in zip(rgb_list, log_paths["cam_log_path_list"], projected_xyc, strict=True):
pinhole_log_path: Path = cam_log_path / "pinhole"
xy = xyc[:, 0:2]
rec.log(
f"{pinhole_log_path}/video/bbox_center",
rr.Points2D(positions=xy, colors=(0, 0, 255), radii=5),
)
IMG_SAM_PREDICTOR.set_image(rgb)
labels: Int[np.ndarray, "num_points"] = np.ones(len(xyc), dtype=np.int32) # noqa: UP037
with torch.inference_mode():
masks, scores, _ = IMG_SAM_PREDICTOR.predict(
point_coords=xy,
point_labels=labels,
multimask_output=False,
)
masks: Bool[np.ndarray, "1 h w"] = masks > 0.0
mask = masks[0].astype(np.uint8)
masks_list.append(mask)
rec.log(
f"{pinhole_log_path}/segmentation",
rr.SegmentationImage(mask),
)
if mask.any():
y_min, y_max = np.where(masks[0].any(axis=1))[0][[0, -1]]
x_min, x_max = np.where(masks[0].any(axis=0))[0][[0, -1]]
bbox = np.array([x_min, y_min, x_max, y_max], dtype=np.float32)
rec.log(
f"{pinhole_log_path}/video/bbox",
rr.Boxes2D(array=bbox, array_format=rr.Box2DFormat.XYXY, colors=(0, 0, 255)),
)
# Calculate the center of the bounding box
center_xyc: Float32[np.ndarray, "3"] = np.array( # noqa: UP037
[(x_min + x_max) / 2, (y_min + y_max) / 2, 1], dtype=np.float32
)
rec.log(
f"{pinhole_log_path}/video/bbox_center",
rr.Points2D(positions=(center_xyc[0], center_xyc[1]), colors=(0, 0, 255), radii=5),
)
IMG_SAM_PREDICTOR.reset_predictor()
else:
rec.log(
"logs",
rr.TextLog("No points selected, skipping segmentation.", level="info"),
)
gr.Info("Not enough points to triangulate.")
yield stream.read(), masks_list
@no_type_check
def log_dataset(dataset_name: Literal["hocap", "assembly101"]):
yield from _log_dataset(dataset_name)
def _log_dataset(dataset_name: Literal["hocap", "assembly101"]):
recording_id: uuid.UUID = uuid.uuid4()
rec: rr.RecordingStream = get_recording(recording_id)
stream: rr.BinaryStream = rec.binary_stream()
match dataset_name:
case "hocap":
sequence: HOCapSequence = HOCapSequence(
data_path=Path("data/hocap/sample"),
sequence_name="20231024_180733",
subject_id="8",
load_labels=False,
)
case "assembly101":
# raise NotImplementedError("Assembly101 is not implemented yet.")
sequence: Assembely101Sequence = Assembely101Sequence(
data_path=Path("data/assembly101-sample"),
sequence_name="nusar-2021_action_both_9015-b05b_9015_user_id_2021-02-02_161800",
subject_id=None,
load_labels=False,
)
case _:
assert_never(dataset_name)
parent_log_path: Path = Path("world")
timeline_name: str = "frame_idx"
images_to_log: int = 8
exo_video_readers: MultiVideoReader = sequence.exo_video_readers
# exo_video_files: list[Path] = exo_video_readers.video_paths[0:images_to_log]
exo_cam_log_paths: list[Path] = [parent_log_path / exo_cam.name for exo_cam in sequence.exo_cam_list][
0:images_to_log
]
exo_video_log_paths: list[Path] = [cam_log_paths / "pinhole" / "video" for cam_log_paths in exo_cam_log_paths][
0:images_to_log
]
initial_blueprint = create_blueprint(exo_video_log_paths, num_videos_to_log=8)
rec.send_blueprint(initial_blueprint)
rec.log("/", sequence.world_coordinate_system, static=True)
bgr_list: list[UInt8[np.ndarray, "h w 3"]] = exo_video_readers[0][0:images_to_log]
rgb_list: list[UInt8[np.ndarray, "h w 3"]] = [cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) for bgr in bgr_list]
# check if depth images exist
if not sequence.depth_paths:
depth_paths = None
else:
depth_paths: dict[ExoCameraIDs, Path] = sequence.depth_paths[0]
exo_cam_list: list[PinholeParameters] = sequence.exo_cam_list[0:images_to_log]
cam_log_path_list: list[Path] = []
fuser = Open3DFuser(fusion_resolution=0.01, max_fusion_depth=1.25)
# log stationary exo cameras and video assets
for exo_cam in exo_cam_list:
cam_log_path: Path = parent_log_path / exo_cam.name
cam_log_path_list.append(cam_log_path)
image_plane_distance: float = 0.1 if dataset_name == "hocap" else 100.0
log_pinhole_rec(
rec=rec,
camera=exo_cam,
cam_log_path=cam_log_path,
image_plane_distance=image_plane_distance,
static=True,
)
for rgb, cam_log_path, exo_cam in zip(rgb_list, cam_log_path_list, exo_cam_list, strict=True):
pinhole_log_path: Path = cam_log_path / "pinhole"
rec.log(f"{pinhole_log_path}/video", rr.Image(rgb, color_model=rr.ColorModel.RGB), static=True)
# rec.log(f"{pinhole_log_path}/depth", rr.DepthImage(depth_image, meter=1000))
if depth_paths is not None:
depth_path: Path = depth_paths[cam_log_path.name]
depth_image: UInt16[np.ndarray, "480 640"] = cv2.imread(str(depth_path), cv2.IMREAD_ANYDEPTH)
fuser.fuse_frames(
depth_image,
exo_cam.intrinsics.k_matrix,
exo_cam.extrinsics.cam_T_world,
rgb,
)
if depth_paths is not None:
mesh: o3d.geometry.TriangleMesh = fuser.get_mesh()
mesh.compute_vertex_normals()
rec.log(
f"{parent_log_path}/mesh",
rr.Mesh3D(
vertex_positions=mesh.vertices,
triangle_indices=mesh.triangles,
vertex_normals=mesh.vertex_normals,
vertex_colors=mesh.vertex_colors,
),
static=True,
)
pcd: o3d.geometry.PointCloud = mesh.sample_points_poisson_disk(
number_of_points=20_000,
)
log_paths = RerunLogPaths(
timeline_name=timeline_name,
parent_log_path=parent_log_path,
cam_log_path_list=cam_log_path_list,
)
mv_keypoint_dict: dict[str, KeypointsContainer] = {
cam_log_path.name: KeypointsContainer.empty() for cam_log_path in cam_log_path_list
}
yield stream.read(), recording_id, log_paths, mv_keypoint_dict, rgb_list, exo_cam_list, pcd
def handle_export(
exo_cam_list: list[PinholeParameters],
rgb_list: list[UInt8[np.ndarray, "h w 3"]],
masks_list: list[UInt8[np.ndarray, "h w"]],
pointcloud: o3d.geometry.PointCloud,
):
bgr_list: list[UInt8[np.ndarray, "h w 3"]] = [cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR) for rgb in rgb_list]
ns_save_dir: Path = Path("data/nerfstudio-export")
masks_list: list[UInt8[np.ndarray, "h w"]] | None = masks_list if len(masks_list) > 0 else None
save_to_nerfstudio(
ns_save_path=ns_save_dir,
pinhole_param_list=exo_cam_list,
bgr_list=bgr_list,
pointcloud=pointcloud,
masks_list=masks_list,
)
# Define the path for the output zip file
zip_output_path = Path("data/nerfstudio-output")
zip_file_path: str = shutil.make_archive(str(zip_output_path), "zip", str(ns_save_dir))
# Return the path to the zip file and switch tabs
return gr.Tabs(selected=1), zip_file_path
with gr.Blocks() as mv_sam_block:
mv_keypoint_dict: dict[str, KeypointsContainer] | gr.State = gr.State({})
inference_state: dict | gr.State = gr.State({})
rgb_list: list[UInt8[np.ndarray, "h w 3"]] | gr.State = gr.State()
masks_list: list[UInt8[np.ndarray, "h w"]] | gr.State = gr.State([])
exo_cam_list: list[PinholeParameters] | gr.State = gr.State([])
pointcloud: o3d.geometry.PointCloud | gr.State = gr.State()
centers_xyc_dict: dict[str, Float32[np.ndarray, "3"]] | gr.State = gr.State({})
with gr.Row():
with gr.Tabs() as main_tabs:
with gr.TabItem("Controls", id=0):
with gr.Column(scale=1):
dataset_dropdown = gr.Dropdown(
label="Dataset",
choices=["hocap", "assembly101"],
value="hocap",
)
load_dataset_btn = gr.Button("Load Dataset")
point_type = gr.Radio(
label="point type",
choices=["include", "exclude"],
value="include",
scale=1,
)
clear_points_btn = gr.Button("Clear Points", scale=1)
get_initial_mask_btn = gr.Button("Get Initial Mask", scale=1)
triangulate_btn = gr.Button("Triangulate Center", scale=1)
export_btn = gr.Button("Export", scale=1)
with gr.TabItem("Output", id=1):
gr.Markdown("here you can see the output of the selected video")
output_zip = gr.File(label="Exported Zip File", file_count="single", type="filepath")
with gr.Column(scale=4):
viewer = Rerun(
streaming=True,
panel_states={
"time": "collapsed",
"blueprint": "hidden",
"selection": "hidden",
},
height=700,
)
# We make a new recording id, and store it in a Gradio's session state.
recording_id = gr.State()
log_paths = gr.State({})
load_dataset_btn.click(
fn=log_dataset,
inputs=[dataset_dropdown],
outputs=[viewer, recording_id, log_paths, mv_keypoint_dict, rgb_list, exo_cam_list, pointcloud],
)
viewer.selection_change(
update_keypoints,
inputs=[
recording_id,
point_type,
mv_keypoint_dict,
log_paths,
],
outputs=[viewer, mv_keypoint_dict],
)
clear_points_btn.click(
fn=reset_keypoints,
inputs=[recording_id, mv_keypoint_dict, log_paths],
outputs=[viewer, mv_keypoint_dict, centers_xyc_dict],
)
get_initial_mask_btn.click(
fn=get_initial_mask,
inputs=[recording_id, inference_state, mv_keypoint_dict, log_paths, rgb_list, centers_xyc_dict],
outputs=[viewer, centers_xyc_dict],
)
triangulate_btn.click(
fn=triangulate_centers,
inputs=[recording_id, centers_xyc_dict, exo_cam_list, log_paths, rgb_list],
outputs=[viewer, masks_list],
)
# TODO export masks + ply + camera poses for use with brush
export_btn.click(
fn=handle_export,
inputs=[exo_cam_list, rgb_list, masks_list, pointcloud],
outputs=[main_tabs, output_zip],
)
|