File size: 8,416 Bytes
d52122b 4ce18b0 10b1ab6 4ce18b0 61f73d5 d52122b b00d113 72d5e40 10b1ab6 4ce18b0 61f73d5 10b1ab6 b00d113 72d5e40 61f73d5 10b1ab6 4ce18b0 10b1ab6 4ce18b0 10b1ab6 4ce18b0 10b1ab6 72d5e40 f73d159 72d5e40 10b1ab6 72d5e40 10b1ab6 72d5e40 b00d113 d52122b 61f73d5 d52122b f73d159 10b1ab6 72d5e40 61f73d5 72d5e40 61f73d5 72d5e40 d52122b 72d5e40 61f73d5 d52122b 72d5e40 10b1ab6 72d5e40 10b1ab6 61f73d5 10b1ab6 61f73d5 10b1ab6 f73d159 10b1ab6 f73d159 72d5e40 b00d113 d52122b 72d5e40 10b1ab6 d52122b 72d5e40 d52122b f73d159 10b1ab6 f73d159 10b1ab6 d52122b 10b1ab6 d52122b f73d159 d52122b 72d5e40 d52122b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
from newsapi import NewsApiClient
from dotenv import load_dotenv
import pandas as pd
from datetime import datetime, timedelta
from transformers import pipeline, AutoTokenizer, AutoModel
import torch
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import spacy
import re
load_dotenv()
class NewsChecker:
def __init__(self):
self.api_key = os.getenv('NEWS_API_KEY')
if not self.api_key:
print("WARNING: NEWS_API_KEY not found in environment variables")
else:
print("NEWS_API_KEY found in environment variables")
try:
self.newsapi = NewsApiClient(api_key=self.api_key)
# Initialize sentiment analyzer
self.sentiment_analyzer = pipeline('sentiment-analysis', model='distilbert-base-uncased-finetuned-sst-2-english')
# Initialize semantic similarity model
self.tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
self.model = AutoModel.from_pretrained('distilbert-base-uncased')
# Load spaCy model for keyword extraction
self.nlp = spacy.load('en_core_web_sm')
print("Models initialized successfully")
except Exception as e:
print(f"Error initializing clients: {str(e)}")
def extract_key_terms(self, text):
"""Extract key product and topic terms from the text"""
doc = self.nlp(text)
# Extract noun phrases and product-related terms
key_terms = []
# Get noun phrases
for chunk in doc.noun_chunks:
if len(chunk.text.split()) <= 3: # Limit to phrases of 3 words or less
key_terms.append(chunk.text.lower())
# Get product-related nouns and adjectives
for token in doc:
if token.pos_ in ['NOUN', 'PROPN'] and not any(token.text.lower() in term for term in key_terms):
key_terms.append(token.text.lower())
# Clean terms
cleaned_terms = []
for term in key_terms:
# Remove common marketing words
if term not in ['introduction', 'collection', 'products', 'items', 'things']:
# Clean the term
cleaned = re.sub(r'[^\w\s-]', '', term)
cleaned = cleaned.strip()
if cleaned and len(cleaned) > 2: # Only keep terms longer than 2 characters
cleaned_terms.append(cleaned)
return list(set(cleaned_terms)) # Remove duplicates
def get_embedding(self, text):
"""Get embedding for a text using DistilBERT"""
try:
# Tokenize and encode the text
inputs = self.tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors="pt")
# Get model outputs
with torch.no_grad():
outputs = self.model(**inputs)
# Use the mean of the last hidden state as the sentence embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings
except Exception as e:
print(f"Error getting embedding: {str(e)}")
return None
def calculate_similarity(self, text1_embedding, text2_embedding):
"""Calculate cosine similarity between two embeddings"""
try:
# Convert tensors to numpy arrays and reshape
emb1 = text1_embedding.numpy().reshape(1, -1)
emb2 = text2_embedding.numpy().reshape(1, -1)
# Calculate cosine similarity
similarity = cosine_similarity(emb1, emb2)[0][0]
return similarity
except Exception as e:
print(f"Error calculating similarity: {str(e)}")
return 0.0
def is_negative_news(self, title, description):
"""Check if the news article has negative sentiment"""
try:
# Combine title and description for better context
text = f"{title} {description}"
result = self.sentiment_analyzer(text)[0]
# Return True if sentiment is negative with high confidence
return result['label'] == 'NEGATIVE' and result['score'] > 0.7
except Exception as e:
print(f"Error in sentiment analysis: {str(e)}")
return False
def get_recent_news(self, marketing_text):
if not self.api_key:
print("Cannot fetch news: No API key configured")
return pd.DataFrame()
try:
# Extract key terms from marketing text
key_terms = self.extract_key_terms(marketing_text)
if not key_terms:
return pd.DataFrame()
# Create search query from key terms
search_query = ' OR '.join([f'"{term}"' for term in key_terms[:5]]) # Use top 5 terms
print(f"Searching news with query: {search_query}")
# Get news from the last 7 days
week_ago = (datetime.now() - timedelta(days=7)).strftime('%Y-%m-%d')
# Get embedding for marketing text
marketing_embedding = self.get_embedding(marketing_text)
if marketing_embedding is None:
return pd.DataFrame()
# Search news with the extracted terms
response = self.newsapi.get_everything(
q=search_query,
from_param=week_ago,
language='en',
sort_by='relevancy',
page_size=50
)
if response['status'] == 'ok':
relevant_news = []
for article in response['articles']:
if not article['title'] or not article['description']:
continue
# Check if the article contains any of our key terms
article_text = f"{article['title'].lower()} {article['description'].lower()}"
if not any(term in article_text for term in key_terms):
continue
# Get embedding for article
article_embedding = self.get_embedding(article_text)
if article_embedding is None:
continue
# Calculate semantic similarity
similarity = self.calculate_similarity(marketing_embedding, article_embedding)
# Check if article is both semantically similar and negative
if similarity > 0.6 and self.is_negative_news(article['title'], article['description']):
relevant_news.append({
'title': article['title'],
'description': article['description'],
'similarity': similarity
})
# Sort by similarity and convert to DataFrame
relevant_news.sort(key=lambda x: x['similarity'], reverse=True)
return pd.DataFrame(relevant_news)
return pd.DataFrame()
except Exception as e:
print(f"Error fetching news: {str(e)}")
return pd.DataFrame()
def check_content_against_news(self, marketing_text):
news_df = self.get_recent_news(marketing_text)
if news_df.empty:
return {
'status': 'pass',
'message': 'No relevant negative news found.'
}
# Get the top 3 most similar negative news articles
top_news = news_df.head(3)
if not top_news.empty:
message = 'Found semantically relevant negative news that might impact your marketing:\n'
for _, row in top_news.iterrows():
message += f"- {row['title']} (Similarity: {row['similarity']:.2f})\n"
return {
'status': 'warning',
'message': message
}
return {
'status': 'pass',
'message': 'No relevant negative news found.'
} |