Spaces:
Running
Running
File size: 36,951 Bytes
f4084da bdde3d7 5e92546 bdde3d7 5e92546 bdde3d7 4d49c3c bdde3d7 5e92546 bdde3d7 92a01b7 bdde3d7 4d49c3c bdde3d7 4d49c3c bdde3d7 4d49c3c bdde3d7 4d49c3c bdde3d7 f48a33c bdde3d7 4d49c3c bdde3d7 e40cdb9 bdde3d7 4d49c3c bdde3d7 4d49c3c bdde3d7 4d49c3c bdde3d7 4d49c3c bdde3d7 f48a33c bdde3d7 f48a33c bdde3d7 f48a33c bdde3d7 f48a33c bdde3d7 5e92546 bdde3d7 4d49c3c f48a33c 5e92546 06794c7 bdde3d7 f48a33c 289605c 4d49c3c 289605c 4d49c3c 289605c 5e92546 289605c f48a33c 06794c7 5e92546 06794c7 5e92546 06794c7 a621ff2 06794c7 a621ff2 06794c7 5e92546 289605c a621ff2 289605c 5e92546 289605c 06794c7 5e92546 06794c7 5e92546 06794c7 5e92546 06794c7 5e92546 289605c 5e92546 06794c7 5e92546 289605c 4d49c3c 289605c bdde3d7 5e92546 bdde3d7 5e92546 bdde3d7 4d49c3c bdde3d7 7184fb2 bdde3d7 7184fb2 bdde3d7 f48a33c bdde3d7 e40cdb9 4d49c3c bdde3d7 f48a33c bdde3d7 4d49c3c bdde3d7 289605c e40cdb9 bdde3d7 289605c bdde3d7 289605c bdde3d7 4d49c3c bdde3d7 e40cdb9 bdde3d7 5e92546 bdde3d7 5e92546 bdde3d7 4d49c3c f48a33c 4d49c3c f48a33c 4d49c3c f48a33c 4d49c3c f48a33c bdde3d7 e40cdb9 289605c bdde3d7 58d32e7 bdde3d7 58d32e7 07d6995 58d32e7 07d6995 bdde3d7 58d32e7 bdde3d7 58d32e7 bdde3d7 58d32e7 bdde3d7 58d32e7 bdde3d7 4d49c3c bdde3d7 766841f bdde3d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
import json
import time
import asyncio
import uvicorn
from fastapi import FastAPI, Request, HTTPException, Header, Depends
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any, Union
import requests
from datetime import datetime
import logging
import os
import re
import base64
import io
from PIL import Image
import ddddocr
from dotenv import load_dotenv
from PIL import ImageFilter
# 加载环境变量
load_dotenv()
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("openai-proxy")
# 创建FastAPI应用
app = FastAPI(
title="OpenAI API Proxy",
description="将OpenAI API请求代理到DeepSider API",
version="1.0.0"
)
# 添加CORS中间件
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 配置
DEEPSIDER_API_BASE = "https://api.chargpt.ai/api/v2"
TOKEN_INDEX = 0
# 验证码识别器实例
ocr = ddddocr.DdddOcr()
# 模型映射表
MODEL_MAPPING = {
"gpt-3.5-turbo": "anthropic/claude-3.5-sonnet",
"gpt-4": "anthropic/claude-3.7-sonnet",
"gpt-4o": "openai/gpt-4o",
"gpt-4-turbo": "openai/gpt-4o",
"gpt-4o-mini": "openai/gpt-4o-mini",
"claude-3-sonnet-20240229": "anthropic/claude-3.5-sonnet",
"claude-3-opus-20240229": "anthropic/claude-3.7-sonnet",
"claude-3.5-sonnet": "anthropic/claude-3.5-sonnet",
"claude-3.7-sonnet": "anthropic/claude-3.7-sonnet",
"o1": "openai/o1",
"o3-mini": "openai/o3-mini",
"gemini-2.0-flash": "google/gemini-2.0-flash",
"gemini-2.0-pro-exp-02-05": "google/gemini-2.0-pro-exp-02-05",
"gemini-2.0-flash-thinking-exp-1219": "google/gemini-2.0-flash-thinking-exp-1219",
"grok-3": "x-ai/grok-3",
"grok-3-reasoner": "x-ai/grok-3-reasoner",
"deepseek-chat": "deepseek/deepseek-chat",
"deepseek-r1": "deepseek/deepseek-r1",
"qwq-32b": "qwen/qwq-32b",
"qwen-max": "qwen/qwen-max"
}
# 请求头
def get_headers(api_key):
global TOKEN_INDEX
# 检查是否包含多个token(用逗号分隔)
tokens = api_key.split(',')
if len(tokens) > 0:
# 轮询选择token
current_token = tokens[TOKEN_INDEX % len(tokens)]
TOKEN_INDEX = (TOKEN_INDEX + 1) % len(tokens)
else:
current_token = api_key
return {
"accept": "*/*",
"accept-encoding": "gzip, deflate, br, zstd",
"accept-language": "en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7",
"content-type": "application/json",
"origin": "chrome-extension://client",
"i-lang": "zh-CN",
"i-version": "1.1.64",
"sec-ch-ua": '"Chromium";v="134", "Not:A-Brand";v="24"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "Windows",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "cross-site",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36",
"authorization": f"Bearer {current_token.strip()}"
}
# OpenAI API请求模型
class ChatMessage(BaseModel):
role: str
content: str
name: Optional[str] = None
reasoning_content: Optional[str] = None # 添加思维链内容字段
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
n: Optional[int] = 1
stream: Optional[bool] = False
stop: Optional[Union[List[str], str]] = None
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = 0
frequency_penalty: Optional[float] = 0
user: Optional[str] = None
# 账户余额查询函数
async def check_account_balance(api_key, token_index=None):
"""检查账户余额信息"""
tokens = api_key.split(',')
# 如果提供了token_index并且有效,则使用指定的token
if token_index is not None and len(tokens) > token_index:
current_token = tokens[token_index].strip()
else:
# 否则使用第一个token
current_token = tokens[0].strip() if tokens else api_key
headers = {
"accept": "*/*",
"content-type": "application/json",
"authorization": f"Bearer {current_token}"
}
try:
# 获取账户余额信息
response = requests.get(
f"{DEEPSIDER_API_BASE.replace('/v2', '')}/quota/retrieve",
headers=headers
)
if response.status_code == 200:
data = response.json()
if data.get('code') == 0:
quota_list = data.get('data', {}).get('list', [])
# 解析余额信息
quota_info = {}
for item in quota_list:
item_type = item.get('type', '')
available = item.get('available', 0)
quota_info[item_type] = {
"total": item.get('total', 0),
"available": available,
"title": item.get('title', '')
}
return True, quota_info
return False, {}
except Exception as e:
logger.warning(f"检查账户余额出错:{str(e)}")
return False, {}
# 工具函数
def verify_api_key(api_key: str = Header(..., alias="Authorization")):
"""验证API密钥"""
if not api_key.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Invalid API key format")
# 获取环境变量中的 ADMIN_KEY
admin_key = os.getenv("ADMIN_KEY")
if not admin_key:
raise HTTPException(status_code=500, detail="ADMIN_KEY not configured")
# 验证传入的 key 是否匹配 ADMIN_KEY
provided_key = api_key.replace("Bearer ", "").strip()
if provided_key != admin_key:
raise HTTPException(status_code=401, detail="Invalid API key")
# 验证通过后,返回 DEEPSIDER_TOKEN
deepsider_token = os.getenv("DEEPSIDER_TOKEN")
if not deepsider_token:
raise HTTPException(status_code=500, detail="DEEPSIDER_TOKEN not configured")
return deepsider_token
def map_openai_to_deepsider_model(model: str) -> str:
"""将OpenAI模型名称映射到DeepSider模型名称"""
return MODEL_MAPPING.get(model, "anthropic/claude-3.7-sonnet")
def format_messages_for_deepsider(messages: List[ChatMessage]) -> str:
"""格式化消息列表为DeepSider API所需的提示格式"""
prompt = ""
for msg in messages:
role = msg.role
# 将OpenAI的角色映射到DeepSider能理解的格式
if role == "system":
# 系统消息放在开头 作为指导
prompt = f"{msg.content}\n\n" + prompt
elif role == "user":
prompt += f"Human: {msg.content}\n\n"
elif role == "assistant":
prompt += f"Assistant: {msg.content}\n\n"
else:
# 其他角色按用户处理
prompt += f"Human ({role}): {msg.content}\n\n"
# 如果最后一个消息不是用户的 添加一个Human前缀引导模型回答
if messages and messages[-1].role != "user":
prompt += "Human: "
return prompt.strip()
async def generate_openai_response(full_response: str, request_id: str, model: str, reasoning_content: str = None) -> Dict:
"""生成符合OpenAI API响应格式的完整响应"""
timestamp = int(time.time())
response_data = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": full_response
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
}
# 如果有思维链内容,添加到响应中
if reasoning_content:
response_data["choices"][0]["message"]["reasoning_content"] = reasoning_content
return response_data
# 验证码处理函数
def extract_captcha_image(content: str) -> Optional[str]:
"""从内容中提取Base64编码的验证码图片"""
# 匹配 markdown 格式的图片 
pattern = r'!\[\]\(data:image\/[^;]+;base64,([^)]+)\)'
match = re.search(pattern, content)
if match:
return match.group(1)
return None
def recognize_captcha(base64_img: str) -> str:
"""使用ddddocr识别验证码"""
try:
# 解码base64图片
img_data = base64.b64decode(base64_img)
# 使用ddddocr识别验证码
captcha_text = ocr.classification(img_data)
logger.info(f"识别到的验证码: {captcha_text}")
return captcha_text
except Exception as e:
logger.error(f"验证码识别出错: {str(e)}")
return ""
async def submit_captcha(api_key: str, conversation_id: str, captcha: str, model: str) -> Optional[requests.Response]:
"""提交验证码到DeepSider API"""
logger.info(f"提交验证码: {captcha}, 会话ID: {conversation_id}, 模型: {model}")
headers = get_headers(api_key)
try:
# 准备验证码提交请求体
payload = {
"clId": conversation_id,
"model": model, # 使用原始请求中的模型
"prompt": captcha, # 验证码作为提示
"webAccess": "close",
"timezone": "Asia/Shanghai"
}
# 发送验证码提交请求
response = requests.post(
f"{DEEPSIDER_API_BASE}/chat/conversation",
headers=headers,
json=payload,
stream=True, # 验证码提交后,响应也是流式的
timeout=30
)
return response
except Exception as e:
logger.error(f"提交验证码时出错: {str(e)}")
return None
# 修改流式响应处理
async def stream_openai_response(response, request_id: str, model: str, api_key, token_index, deepsider_model: str, is_post_captcha: bool = False):
"""流式返回OpenAI API格式的响应"""
timestamp = int(time.time())
full_response = ""
full_reasoning = "" # 添加思维链内容累积变量
conversation_id = None # 会话ID
captcha_base64 = None # 验证码图片
captcha_detected = False # 验证码检测标志
captcha_content = "" # 验证码响应内容
try:
# 使用iter_content替代iter_lines
buffer = bytearray()
for chunk in response.iter_content(chunk_size=None):
if chunk:
buffer.extend(chunk)
try:
text = buffer.decode('utf-8')
lines = text.split('\n')
for line in lines[:-1]:
if line.startswith('data: '):
try:
data = json.loads(line[6:])
logger.debug(f"Received data: {data}")
# 获取会话ID (所有流都可能包含)
if data.get('code') == 201:
conversation_id = data.get('data', {}).get('clId')
logger.info(f"会话ID: {conversation_id}")
if data.get('code') == 202 and data.get('data', {}).get('type') == "chat":
content = data.get('data', {}).get('content', '')
reasoning_content = data.get('data', {}).get('reasoning_content', '')
# 检测是否含有验证码
if "验证码提示" in content and "
captcha_base64 = extract_captcha_image(content)
# 累积非验证码响应内容
if not captcha_detected:
full_response += content
# 处理思维链内容
if reasoning_content:
full_reasoning += reasoning_content
# 当整个响应结束时处理验证码
elif data.get('code') == 203:
# 如果检测到验证码,进行验证码处理
if captcha_detected and captcha_base64 and conversation_id:
# 先向客户端发送验证码响应
original_captcha_message = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": captcha_content
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(original_captcha_message)}\n\n"
# 显示自动识别提示
captcha_message = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": "\n[系统检测到验证码,正在自动识别...]"
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(captcha_message)}\n\n"
# 识别验证码
captcha_text = recognize_captcha(captcha_base64)
if captcha_text:
# 发送验证码识别结果通知
captcha_result = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": f"\n[系统已自动识别验证码: {captcha_text},正在提交...]"
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(captcha_result)}\n\n"
# 提交验证码
captcha_response = await submit_captcha(api_key, conversation_id, captcha_text, deepsider_model)
if captcha_response is None:
# 请求本身失败 (网络错误等)
error_msg = "\n[验证码提交请求失败,请检查网络或服务日志]"
error_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": error_msg
},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(error_chunk)}\n\n"
yield "data: [DONE]\n\n"
return
elif not captcha_response.ok:
# API返回了错误状态码 (4xx, 5xx)
status_code = captcha_response.status_code
logger.error(f"提交验证码后API返回错误: {status_code}")
error_body_text = ""
error_message = f"HTTP Status {status_code}"
try:
# 尝试读取错误响应体
error_body_text = captcha_response.text
logger.error(f"错误响应体: {error_body_text}")
# 尝试解析JSON错误信息
error_data = captcha_response.json()
error_message = error_data.get('message', str(error_data))
except Exception as parse_err:
logger.warning(f"解析错误响应体失败: {parse_err}")
if error_body_text:
error_message = error_body_text[:100] # 截断以防过长
error_msg = f"\n[验证码提交后出错: {error_message}]"
error_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": error_msg
},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(error_chunk)}\n\n"
yield "data: [DONE]\n\n"
return
else:
# 验证码提交成功 (2xx),继续处理响应流
# 发送验证码提交成功通知
captcha_submitted_message = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": "\n[验证码已提交,正在获取响应...]"
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(captcha_submitted_message)}\n\n"
# 处理验证码后的响应(可能还有验证码)
# 创建一个新的stream_openai_response流,但检测是否还有验证码
async for chunk_after_captcha in stream_openai_response(
captcha_response, request_id, model, api_key, token_index, deepsider_model
):
yield chunk_after_captcha
return
else:
# 验证码识别失败的处理
error_msg = "\n[验证码识别失败,请重试]"
error_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": error_msg
},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(error_chunk)}\n\n"
yield "data: [DONE]\n\n"
return
# 非验证码响应,直接流式输出到目前为止收集的内容
if not captcha_detected:
# 流式输出响应内容
if full_response:
content_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": full_response
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(content_chunk)}\n\n"
# 流式输出思维链内容(如果有)
if full_reasoning:
reasoning_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"reasoning_content": full_reasoning
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(reasoning_chunk)}\n\n"
# 发送完成信号
final_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(final_chunk)}\n\n"
yield "data: [DONE]\n\n"
except json.JSONDecodeError as e:
logger.warning(f"JSON解析失败: {line}, 错误: {str(e)}")
continue
buffer = bytearray(lines[-1].encode('utf-8'))
except UnicodeDecodeError:
continue
except Exception as e:
logger.error(f"流式响应处理出错: {str(e)}")
# 返回错误信息
error_msg = "\n\n[处理响应时出错: {str(e)}]"
error_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": error_msg
},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(error_chunk)}\n\n"
yield "data: [DONE]\n\n"
# 路由定义
@app.get("/")
async def root():
return {"message": "OpenAI API Proxy服务已启动 连接至DeepSider API"}
@app.get("/v1/models")
async def list_models(api_key: str = Depends(verify_api_key)):
"""列出可用的模型"""
models = []
for openai_model, _ in MODEL_MAPPING.items():
models.append({
"id": openai_model,
"object": "model",
"created": int(time.time()),
"owned_by": "openai-proxy"
})
return {
"object": "list",
"data": models
}
@app.post("/v1/chat/completions")
async def create_chat_completion(
request: Request,
api_key: str = Depends(verify_api_key)
):
"""创建聊天完成API - 支持普通请求和流式请求"""
# 解析请求体
body = await request.json()
chat_request = ChatCompletionRequest(**body)
# 生成唯一请求ID
request_id = datetime.now().strftime("%Y%m%d%H%M%S") + str(time.time_ns())[-6:]
# 映射模型
deepsider_model = map_openai_to_deepsider_model(chat_request.model)
# 准备DeepSider API所需的提示
prompt = format_messages_for_deepsider(chat_request.messages)
# 准备请求体
payload = {
"model": deepsider_model,
"prompt": prompt,
"webAccess": "close",
"timezone": "Asia/Shanghai"
}
# 添加其他可选参数
if chat_request.temperature is not None:
payload["temperature"] = chat_request.temperature
if chat_request.top_p is not None:
payload["top_p"] = chat_request.top_p
if chat_request.max_tokens is not None:
payload["max_tokens"] = chat_request.max_tokens
# 获取请求头
headers = get_headers(api_key)
try:
response = requests.post(
f"{DEEPSIDER_API_BASE}/chat/conversation",
headers=headers,
json=payload,
stream=True,
timeout=30
)
# 新增调试日志
logger.info(f"请求头: {headers}")
logger.info(f"请求体: {payload}")
logger.info(f"响应状态码: {response.status_code}")
if response.status_code != 200:
# 新增详细错误日志
logger.error(f"DeepSider API错误响应头: {response.headers}")
logger.error(f"错误响应体: {response.text}")
error_msg = f"DeepSider API请求失败: {response.status_code}"
try:
error_data = response.json()
error_msg += f" - {error_data.get('message', '')}"
except:
error_msg += f" - {response.text}"
logger.error(error_msg)
raise HTTPException(status_code=response.status_code, detail=error_msg)
# 处理流式或非流式响应
if chat_request.stream:
# 返回流式响应 - 初始调用 is_post_captcha 默认为 False
return StreamingResponse(
stream_openai_response(response, request_id, chat_request.model, api_key, TOKEN_INDEX, deepsider_model),
media_type="text/event-stream"
)
else:
# 收集完整响应
full_response = ""
full_reasoning = "" # 思维链内容累积变量
for line in response.iter_lines():
if not line:
continue
if line.startswith(b'data: '):
try:
data = json.loads(line[6:].decode('utf-8'))
if data.get('code') == 202 and data.get('data', {}).get('type') == "chat":
content = data.get('data', {}).get('content', '')
reasoning_content = data.get('data', {}).get('reasoning_content', '')
if content:
full_response += content
# 收集思维链内容
if reasoning_content:
full_reasoning += reasoning_content
except json.JSONDecodeError:
pass
# 返回OpenAI格式的完整响应
return await generate_openai_response(full_response, request_id, chat_request.model, full_reasoning)
except requests.Timeout as e:
logger.error(f"请求超时: {str(e)}")
raise HTTPException(status_code=504, detail="上游服务响应超时")
except requests.RequestException as e:
logger.error(f"网络请求异常: {str(e)}")
raise HTTPException(status_code=502, detail="网关错误")
@app.get("/admin/balance")
async def get_account_balance():
"""查看账户余额"""
# 从环境变量获取API密钥
api_key = os.getenv("DEEPSIDER_TOKEN", "")
if not api_key:
raise HTTPException(status_code=500, detail="未配置 DEEPSIDER_TOKEN 环境变量")
tokens = api_key.split(',')
total_quota = {
"total": 0,
"available": 0
}
# 获取所有token的余额信息并计算总和
for i, token in enumerate(tokens):
success, quota_info = await check_account_balance(api_key, i)
if success:
for quota_type, info in quota_info.items():
total_quota["total"] += info.get("total", 0)
total_quota["available"] += info.get("available", 0)
return total_quota
# 错误处理器
@app.exception_handler(404)
async def not_found_handler(request, exc):
return {
"error": {
"message": f"未找到资源: {request.url.path}",
"type": "not_found_error",
"code": "not_found"
}
}, 404
# 启动事件
@app.on_event("startup")
async def startup_event():
"""服务启动时初始化"""
logger.info(f"OpenAI API代理服务已启动,可以接受请求")
logger.info(f"支持多token轮询,请在Authorization头中使用英文逗号分隔多个token")
# 主程序
if __name__ == "__main__":
# 启动服务器
port = int(os.getenv("PORT", "7860"))
logger.info(f"启动OpenAI API代理服务 端口: {port}")
uvicorn.run(app, host="0.0.0.0", port=port) |