Update app.py
Browse files
app.py
CHANGED
@@ -18,101 +18,88 @@ print("Loading model, please wait...")
|
|
18 |
model, tokenizer = load_model()
|
19 |
print("Model loaded successfully!")
|
20 |
|
21 |
-
|
22 |
-
SUPPORTED_LANGUAGES = [
|
23 |
-
"English", "Spanish", "French", "German", "Chinese",
|
24 |
-
"Japanese", "Russian", "Arabic", "Portuguese", "Italian"
|
25 |
-
]
|
26 |
-
|
27 |
-
def translate_text(input_text, source_lang, target_lang, max_length=4096):
|
28 |
"""
|
29 |
-
|
30 |
"""
|
31 |
-
if not
|
32 |
-
return "
|
33 |
|
34 |
-
# Create a
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
{target_lang} translation:"""
|
40 |
|
41 |
# Create inputs for the model
|
42 |
-
inputs = tokenizer(
|
43 |
|
44 |
-
# Generate
|
45 |
with torch.no_grad():
|
46 |
outputs = model.generate(
|
47 |
**inputs,
|
48 |
max_new_tokens=max_length,
|
49 |
-
do_sample=
|
50 |
-
temperature=0.
|
|
|
51 |
)
|
52 |
|
53 |
-
# Extract only the generated part (the
|
54 |
-
|
55 |
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
# Define the Gradio interface
|
59 |
-
def
|
60 |
-
with gr.Blocks(title="BitNet
|
61 |
-
gr.Markdown("#
|
62 |
-
gr.Markdown("A lightweight
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
)
|
71 |
-
input_text = gr.Textbox(
|
72 |
-
lines=5,
|
73 |
-
placeholder="Enter text to translate...",
|
74 |
-
label="Input Text"
|
75 |
-
)
|
76 |
-
|
77 |
-
with gr.Column():
|
78 |
-
target_lang = gr.Dropdown(
|
79 |
-
choices=SUPPORTED_LANGUAGES,
|
80 |
-
value="Spanish",
|
81 |
-
label="Target Language"
|
82 |
-
)
|
83 |
-
output_text = gr.Textbox(
|
84 |
-
lines=5,
|
85 |
-
label="Translated Text"
|
86 |
-
)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
|
|
|
|
|
95 |
# Add some example inputs
|
96 |
examples = [
|
97 |
-
["Hello, how are you today?"
|
98 |
-
["
|
99 |
-
["
|
100 |
-
["
|
101 |
]
|
102 |
-
gr.Examples(examples=examples, inputs=[
|
103 |
|
104 |
gr.Markdown("""
|
105 |
## About
|
106 |
-
This application uses Microsoft's BitNet b1.58 2B4T, a 1-bit Large Language Model, for
|
107 |
The model runs efficiently on consumer hardware due to its 1-bit architecture, offering significant
|
108 |
advantages in memory usage, energy consumption, and latency.
|
109 |
|
110 |
-
Note:
|
111 |
""")
|
112 |
|
113 |
return demo
|
114 |
|
115 |
# Create and launch the Gradio interface
|
116 |
if __name__ == "__main__":
|
117 |
-
demo =
|
118 |
demo.launch(share=True) # Set share=False if you don't want a public link
|
|
|
18 |
model, tokenizer = load_model()
|
19 |
print("Model loaded successfully!")
|
20 |
|
21 |
+
def generate_response(message, chat_history, max_length=4096):
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"""
|
23 |
+
Generates a response from the BitNet model based on the user's message
|
24 |
"""
|
25 |
+
if not message.strip():
|
26 |
+
return "", chat_history
|
27 |
|
28 |
+
# Create a chat prompt based on the history and new message
|
29 |
+
full_prompt = ""
|
30 |
+
for user_msg, bot_msg in chat_history:
|
31 |
+
full_prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n\n"
|
32 |
|
33 |
+
full_prompt += f"User: {message}\nAssistant:"
|
|
|
|
|
34 |
|
35 |
# Create inputs for the model
|
36 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
37 |
|
38 |
+
# Generate response
|
39 |
with torch.no_grad():
|
40 |
outputs = model.generate(
|
41 |
**inputs,
|
42 |
max_new_tokens=max_length,
|
43 |
+
do_sample=True,
|
44 |
+
temperature=0.7, # Slightly higher temperature for more creative responses
|
45 |
+
top_p=0.95,
|
46 |
)
|
47 |
|
48 |
+
# Extract only the generated part (the response)
|
49 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
50 |
|
51 |
+
# Update chat history
|
52 |
+
chat_history.append((message, response.strip()))
|
53 |
+
|
54 |
+
return "", chat_history
|
55 |
|
56 |
# Define the Gradio interface
|
57 |
+
def create_chat_interface():
|
58 |
+
with gr.Blocks(title="BitNet Chat Assistant") as demo:
|
59 |
+
gr.Markdown("# 💬 BitNet Chat Assistant")
|
60 |
+
gr.Markdown("A lightweight chat application powered by Microsoft's BitNet b1.58 2B4T model.")
|
61 |
|
62 |
+
chatbot = gr.Chatbot(height=400)
|
63 |
+
msg = gr.Textbox(
|
64 |
+
show_label=False,
|
65 |
+
placeholder="Type your message here...",
|
66 |
+
container=False
|
67 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
clear = gr.Button("Clear Conversation")
|
70 |
+
|
71 |
+
def clear_convo():
|
72 |
+
return "", []
|
73 |
+
|
74 |
+
msg.submit(
|
75 |
+
fn=generate_response,
|
76 |
+
inputs=[msg, chatbot],
|
77 |
+
outputs=[msg, chatbot]
|
78 |
)
|
79 |
|
80 |
+
clear.click(fn=clear_convo, inputs=[], outputs=[msg, chatbot])
|
81 |
+
|
82 |
# Add some example inputs
|
83 |
examples = [
|
84 |
+
["Hello, how are you today?"],
|
85 |
+
["Can you tell me about artificial intelligence?"],
|
86 |
+
["What's your favorite book?"],
|
87 |
+
["Write a short poem about technology."],
|
88 |
]
|
89 |
+
gr.Examples(examples=examples, inputs=[msg])
|
90 |
|
91 |
gr.Markdown("""
|
92 |
## About
|
93 |
+
This application uses Microsoft's BitNet b1.58 2B4T, a 1-bit Large Language Model, for conversational AI.
|
94 |
The model runs efficiently on consumer hardware due to its 1-bit architecture, offering significant
|
95 |
advantages in memory usage, energy consumption, and latency.
|
96 |
|
97 |
+
Note: This is a demonstration of the lightweight model's capabilities.
|
98 |
""")
|
99 |
|
100 |
return demo
|
101 |
|
102 |
# Create and launch the Gradio interface
|
103 |
if __name__ == "__main__":
|
104 |
+
demo = create_chat_interface()
|
105 |
demo.launch(share=True) # Set share=False if you don't want a public link
|