Spaces:
Sleeping
Sleeping
kz209
commited on
Commit
·
d092d11
1
Parent(s):
80a8eaa
add vllm
Browse files- README.md +1 -1
- app.py +3 -2
- pages/arena.py +4 -3
- pages/batch_evaluation.py +5 -8
- pages/leaderboard.py +3 -1
- pages/summarization_playground.py +6 -7
- prompt/prompt.ipynb +1 -1
- requirements.txt +2 -1
- utils/model.py +93 -76
- utils/multiple_stream.py +1 -0
README.md
CHANGED
@@ -78,4 +78,4 @@ For bug fixes or questions, either open an issue or create a branch prefixed wit
|
|
78 |
|
79 |
## Accknowledgement
|
80 |
|
81 |
-
Thanks for the GPU grant from Huggingface.
|
|
|
78 |
|
79 |
## Accknowledgement
|
80 |
|
81 |
+
Thanks for the GPU grant from Huggingface.
|
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from pages.arena import create_arena
|
4 |
-
from pages.summarization_playground import create_summarization_interface
|
5 |
-
from pages.leaderboard import create_leaderboard
|
6 |
from pages.batch_evaluation import create_batch_evaluation_interface
|
|
|
|
|
|
|
7 |
|
8 |
def welcome_message():
|
9 |
return """## Clinical Dialogue Summarization
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from pages.arena import create_arena
|
|
|
|
|
4 |
from pages.batch_evaluation import create_batch_evaluation_interface
|
5 |
+
from pages.leaderboard import create_leaderboard
|
6 |
+
from pages.summarization_playground import create_summarization_interface
|
7 |
+
|
8 |
|
9 |
def welcome_message():
|
10 |
return """## Clinical Dialogue Summarization
|
pages/arena.py
CHANGED
@@ -1,11 +1,12 @@
|
|
|
|
1 |
import random
|
|
|
2 |
import gradio as gr
|
3 |
-
import json
|
4 |
|
|
|
5 |
from utils.data import dataset
|
6 |
from utils.multiple_stream import stream_data
|
7 |
-
|
8 |
-
from pages.summarization_playground import custom_css
|
9 |
|
10 |
def random_data_selection():
|
11 |
datapoint = random.choice(dataset)
|
|
|
1 |
+
import json
|
2 |
import random
|
3 |
+
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
+
from pages.summarization_playground import custom_css, get_model_batch_generation
|
7 |
from utils.data import dataset
|
8 |
from utils.multiple_stream import stream_data
|
9 |
+
|
|
|
10 |
|
11 |
def random_data_selection():
|
12 |
datapoint = random.choice(dataset)
|
pages/batch_evaluation.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
-
from dotenv import load_dotenv
|
2 |
-
import gradio as gr
|
3 |
-
|
4 |
-
import json
|
5 |
import html
|
|
|
6 |
import logging
|
7 |
|
|
|
8 |
import numpy as np
|
|
|
9 |
|
10 |
-
from
|
11 |
from utils.metric import metric_rouge_score
|
12 |
-
|
13 |
-
from pages.summarization_playground import generate_answer
|
14 |
-
from pages.summarization_playground import custom_css
|
15 |
|
16 |
load_dotenv()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
1 |
import html
|
2 |
+
import json
|
3 |
import logging
|
4 |
|
5 |
+
import gradio as gr
|
6 |
import numpy as np
|
7 |
+
from dotenv import load_dotenv
|
8 |
|
9 |
+
from pages.summarization_playground import custom_css, generate_answer
|
10 |
from utils.metric import metric_rouge_score
|
11 |
+
from utils.model import Model
|
|
|
|
|
12 |
|
13 |
load_dotenv()
|
14 |
|
pages/leaderboard.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import html
|
2 |
import json
|
3 |
-
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
# Function to create HTML tooltips
|
7 |
def create_html_with_tooltip(id, base_url):
|
|
|
1 |
import html
|
2 |
import json
|
3 |
+
|
4 |
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
|
8 |
# Function to create HTML tooltips
|
9 |
def create_html_with_tooltip(id, base_url):
|
pages/summarization_playground.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
import random
|
4 |
|
5 |
-
|
6 |
-
from utils.data import dataset
|
7 |
-
|
8 |
-
import gc
|
9 |
import torch
|
|
|
10 |
|
11 |
-
import
|
|
|
12 |
|
13 |
load_dotenv()
|
14 |
|
|
|
1 |
+
import gc
|
2 |
+
import logging
|
3 |
import random
|
4 |
|
5 |
+
import gradio as gr
|
|
|
|
|
|
|
6 |
import torch
|
7 |
+
from dotenv import load_dotenv
|
8 |
|
9 |
+
from utils.data import dataset
|
10 |
+
from utils.model import Model
|
11 |
|
12 |
load_dotenv()
|
13 |
|
prompt/prompt.ipynb
CHANGED
@@ -15,7 +15,7 @@
|
|
15 |
" \"author\": \"Shunxi Wu\",\n",
|
16 |
" \"metric\": {\n",
|
17 |
" \"Rouge\": 0.14,\n",
|
18 |
-
" \"winning_number\":
|
19 |
" },\n",
|
20 |
" \"url\": \"https://docs.google.com/spreadsheets/d/1ui9ccRkzeMWAiJiRgr2ClpYTAK4uFhX44aXi0WDJY8Q/edit?gid=1699794338#gid=1699794338&range=D2\"\n",
|
21 |
" },\n",
|
|
|
15 |
" \"author\": \"Shunxi Wu\",\n",
|
16 |
" \"metric\": {\n",
|
17 |
" \"Rouge\": 0.14,\n",
|
18 |
+
" \"winning_number\": 11\n",
|
19 |
" },\n",
|
20 |
" \"url\": \"https://docs.google.com/spreadsheets/d/1ui9ccRkzeMWAiJiRgr2ClpYTAK4uFhX44aXi0WDJY8Q/edit?gid=1699794338#gid=1699794338&range=D2\"\n",
|
21 |
" },\n",
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ torchvision
|
|
9 |
torchaudio
|
10 |
datasets
|
11 |
rouge-score
|
12 |
-
markdown
|
|
|
|
9 |
torchaudio
|
10 |
datasets
|
11 |
rouge-score
|
12 |
+
markdown
|
13 |
+
vllm
|
utils/model.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
|
|
|
4 |
from huggingface_hub import login
|
5 |
-
import
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
login(token = os.getenv('HF_TOKEN'))
|
10 |
|
11 |
class Model(torch.nn.Module):
|
12 |
number_of_models = 0
|
@@ -23,89 +23,106 @@ class Model(torch.nn.Module):
|
|
23 |
|
24 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
self.name = model_name
|
|
|
26 |
|
27 |
-
logging.info(f'
|
28 |
|
29 |
-
if
|
30 |
-
#
|
31 |
-
self.
|
32 |
-
model_name,
|
|
|
|
|
|
|
33 |
)
|
34 |
else:
|
35 |
-
#
|
36 |
-
self.model =
|
37 |
-
model_name,
|
|
|
|
|
38 |
)
|
|
|
39 |
|
40 |
logging.info(f'Loaded model {self.name}')
|
41 |
-
|
42 |
-
self.model.eval()
|
43 |
self.update()
|
44 |
|
45 |
@classmethod
|
46 |
def update(cls):
|
47 |
cls.number_of_models += 1
|
48 |
|
49 |
-
def
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
"return_dict_in_generate": True,
|
70 |
-
"output_scores": True
|
71 |
-
}
|
72 |
-
|
73 |
-
# Generate and yield tokens one by one
|
74 |
-
generated_tokens = 0
|
75 |
-
batch_size = input_ids.shape[0]
|
76 |
-
active_sequences = torch.arange(batch_size)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
|
4 |
+
import torch
|
5 |
from huggingface_hub import login
|
6 |
+
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
|
7 |
+
from vllm import LLM, SamplingParams
|
8 |
|
9 |
+
login(token=os.getenv('HF_TOKEN'))
|
|
|
|
|
10 |
|
11 |
class Model(torch.nn.Module):
|
12 |
number_of_models = 0
|
|
|
23 |
|
24 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
self.name = model_name
|
26 |
+
self.use_vllm = model_name != "google-t5/t5-large"
|
27 |
|
28 |
+
logging.info(f'Start loading model {self.name}')
|
29 |
|
30 |
+
if self.use_vllm:
|
31 |
+
# 使用vLLM加载模型
|
32 |
+
self.llm = LLM(
|
33 |
+
model=model_name,
|
34 |
+
dtype="bfloat16",
|
35 |
+
tokenizer=model_name,
|
36 |
+
trust_remote_code=True
|
37 |
)
|
38 |
else:
|
39 |
+
# 加载原始transformers模型
|
40 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
41 |
+
model_name,
|
42 |
+
torch_dtype=torch.bfloat16,
|
43 |
+
device_map="auto"
|
44 |
)
|
45 |
+
self.model.eval()
|
46 |
|
47 |
logging.info(f'Loaded model {self.name}')
|
|
|
|
|
48 |
self.update()
|
49 |
|
50 |
@classmethod
|
51 |
def update(cls):
|
52 |
cls.number_of_models += 1
|
53 |
|
54 |
+
def gen(self, content_list, temp=0.001, max_length=500, do_sample=True):
|
55 |
+
if self.use_vllm:
|
56 |
+
sampling_params = SamplingParams(
|
57 |
+
temperature=temp,
|
58 |
+
max_tokens=max_length,
|
59 |
+
top_p=0.95 if do_sample else 1.0,
|
60 |
+
stop_token_ids=[self.tokenizer.eos_token_id]
|
61 |
+
)
|
62 |
+
outputs = self.llm.generate(content_list, sampling_params)
|
63 |
+
return [output.outputs[0].text for output in outputs]
|
64 |
+
else:
|
65 |
+
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
66 |
+
outputs = self.model.generate(
|
67 |
+
input_ids,
|
68 |
+
max_new_tokens=max_length,
|
69 |
+
do_sample=do_sample,
|
70 |
+
temperature=temp,
|
71 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
72 |
+
)
|
73 |
+
return self.tokenizer.batch_decode(outputs[:, input_ids.shape[1]:], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
def streaming(self, content_list, temp=0.001, max_length=500, do_sample=True):
|
76 |
+
if self.use_vllm:
|
77 |
+
sampling_params = SamplingParams(
|
78 |
+
temperature=temp,
|
79 |
+
max_tokens=max_length,
|
80 |
+
top_p=0.95 if do_sample else 1.0,
|
81 |
+
stop_token_ids=[self.tokenizer.eos_token_id]
|
82 |
+
)
|
83 |
+
outputs = self.llm.generate(content_list, sampling_params, stream=True)
|
84 |
|
85 |
+
prev_token_ids = [[] for _ in content_list]
|
86 |
|
87 |
+
for output in outputs:
|
88 |
+
for i, request_output in enumerate(output.outputs):
|
89 |
+
current_token_ids = request_output.token_ids
|
90 |
+
new_token_ids = current_token_ids[len(prev_token_ids[i]):]
|
91 |
+
prev_token_ids[i] = current_token_ids.copy()
|
92 |
+
|
93 |
+
for token_id in new_token_ids:
|
94 |
+
token_text = self.tokenizer.decode(token_id, skip_special_tokens=True)
|
95 |
+
yield i, token_text
|
96 |
+
else:
|
97 |
+
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
98 |
+
|
99 |
+
gen_kwargs = {
|
100 |
+
"input_ids": input_ids,
|
101 |
+
"do_sample": do_sample,
|
102 |
+
"temperature": temp,
|
103 |
+
"eos_token_id": self.tokenizer.eos_token_id,
|
104 |
+
"max_new_tokens": 1,
|
105 |
+
"return_dict_in_generate": True,
|
106 |
+
"output_scores": True
|
107 |
+
}
|
108 |
+
|
109 |
+
generated_tokens = 0
|
110 |
+
batch_size = input_ids.shape[0]
|
111 |
+
active_sequences = torch.arange(batch_size)
|
112 |
+
|
113 |
+
while generated_tokens < max_length and len(active_sequences) > 0:
|
114 |
+
with torch.no_grad():
|
115 |
+
output = self.model.generate(**gen_kwargs)
|
116 |
+
|
117 |
+
next_tokens = output.sequences[:, -1].unsqueeze(-1)
|
118 |
+
|
119 |
+
for i, token in zip(active_sequences, next_tokens):
|
120 |
+
yield i.item(), self.tokenizer.decode(token[0], skip_special_tokens=True)
|
121 |
+
|
122 |
+
gen_kwargs["input_ids"] = torch.cat([gen_kwargs["input_ids"], next_tokens], dim=-1)
|
123 |
+
generated_tokens += 1
|
124 |
+
|
125 |
+
completed = (next_tokens.squeeze(-1) == self.tokenizer.eos_token_id).nonzero().squeeze(-1)
|
126 |
+
active_sequences = torch.tensor([i for i in active_sequences if i not in completed])
|
127 |
+
if len(active_sequences) > 0:
|
128 |
+
gen_kwargs["input_ids"] = gen_kwargs["input_ids"][active_sequences]
|
utils/multiple_stream.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import copy
|
2 |
import random
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
TEST = """ Test of Time. A Benchmark for Evaluating LLMs on Temporal Reasoning. Large language models (LLMs) have
|
|
|
1 |
import copy
|
2 |
import random
|
3 |
+
|
4 |
import gradio as gr
|
5 |
|
6 |
TEST = """ Test of Time. A Benchmark for Evaluating LLMs on Temporal Reasoning. Large language models (LLMs) have
|