Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,57 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
import faiss
|
4 |
-
import numpy as np
|
5 |
-
import pickle
|
6 |
-
from sentence_transformers import SentenceTransformer
|
7 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
raise ValueError("HF_TOKEN environment variable not set. Please configure it in Space settings.")
|
13 |
-
|
14 |
-
|
15 |
-
# Load precomputed chunks and FAISS index
|
16 |
-
with open("chunks.pkl", "rb") as f:
|
17 |
-
chunks = pickle.load(f)
|
18 |
-
index = faiss.read_index("index.faiss")
|
19 |
-
|
20 |
-
# Load embedding model (same as used in preprocessing)
|
21 |
-
embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
22 |
-
|
23 |
-
|
24 |
-
# Load Jais model and tokenizer
|
25 |
-
model_name = "aubmindlab/aragpt2-base"
|
26 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HF_TOKEN, trust_remote_code=True)
|
27 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, token=HF_TOKEN, trust_remote_code=True)
|
28 |
-
|
29 |
-
|
30 |
-
# RAG function to retrieve and generate a response
|
31 |
-
def get_response(query, k=3):
|
32 |
-
query_embedding = embedding_model.encode([query])
|
33 |
-
distances, indices = index.search(np.array(query_embedding), k)
|
34 |
-
retrieved_chunks = [chunks[i] for i in indices[0]]
|
35 |
-
context = " ".join(retrieved_chunks)
|
36 |
-
prompt = f"Based on the following documents: {context}, answer the question: {query}"
|
37 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
38 |
-
outputs = model.generate(
|
39 |
-
**inputs,
|
40 |
-
max_new_tokens=200,
|
41 |
-
do_sample=True,
|
42 |
-
temperature=0.7,
|
43 |
-
top_p=0.9,
|
44 |
-
return_full_text=False
|
45 |
-
)
|
46 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
-
return response.split(query)[-1].strip()
|
48 |
-
|
49 |
-
# Gradio interface
|
50 |
-
import gradio as gr
|
51 |
|
52 |
with gr.Blocks(title="المتحدث الآلي للتشريعات المحلية لإمارة دبي") as demo:
|
53 |
-
gr.Markdown("# Dubai Legislation Chatbot\nاسأل أي سؤال حول تشريعات
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
def user(user_message, history):
|
59 |
-
|
|
|
60 |
|
61 |
def bot(history):
|
62 |
user_message = history[-1][0]
|
63 |
-
bot_message = get_response(user_message)
|
64 |
history[-1][1] = bot_message
|
65 |
return history
|
66 |
|
67 |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
68 |
bot, chatbot, chatbot
|
69 |
)
|
70 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
# Placeholder response function
|
4 |
+
def get_response(user_message):
|
5 |
+
return f"رد تلقائي: {user_message}" # Replace this with your AI model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
with gr.Blocks(title="المتحدث الآلي للتشريعات المحلية لإمارة دبي") as demo:
|
8 |
+
gr.Markdown("# Dubai Legislation Chatbot\nاسأل أي سؤال حول تشريعات دبي - نسخة تجريبية (تصميم وتنفيذ م. أسامة الخطيب)", elem_id="title")
|
9 |
+
|
10 |
+
chatbot = gr.Chatbot(elem_id="chatbot")
|
11 |
+
msg = gr.Textbox(placeholder="اكتب سؤالك هنا...", rtl=True, elem_id="input-box")
|
12 |
+
clear = gr.Button("مسح", elem_id="clear-btn")
|
13 |
|
14 |
def user(user_message, history):
|
15 |
+
history.append([user_message, None])
|
16 |
+
return "", history
|
17 |
|
18 |
def bot(history):
|
19 |
user_message = history[-1][0]
|
20 |
+
bot_message = get_response(user_message)
|
21 |
history[-1][1] = bot_message
|
22 |
return history
|
23 |
|
24 |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
25 |
bot, chatbot, chatbot
|
26 |
)
|
|
|
27 |
|
28 |
+
clear.click(lambda: [], None, chatbot, queue=False)
|
29 |
+
|
30 |
+
# Launch with custom RTL-friendly CSS
|
31 |
+
demo.launch(css="""
|
32 |
+
#title {
|
33 |
+
text-align: center;
|
34 |
+
font-size: 24px;
|
35 |
+
color: darkblue;
|
36 |
+
direction: rtl;
|
37 |
+
}
|
38 |
+
#chatbot {
|
39 |
+
background-color: #f9f9f9;
|
40 |
+
border-radius: 10px;
|
41 |
+
padding: 10px;
|
42 |
+
direction: rtl;
|
43 |
+
text-align: right;
|
44 |
+
font-family: 'Tajawal', sans-serif;
|
45 |
+
}
|
46 |
+
#input-box {
|
47 |
+
border: 2px solid blue;
|
48 |
+
padding: 10px;
|
49 |
+
direction: rtl;
|
50 |
+
text-align: right;
|
51 |
+
}
|
52 |
+
#clear-btn {
|
53 |
+
background-color: red;
|
54 |
+
color: white;
|
55 |
+
font-weight: bold;
|
56 |
+
}
|
57 |
+
""")
|