Spaces:
Running
on
Zero
Running
on
Zero
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title: Compare Models
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
+
title: Compare Security Models
|
3 |
+
emoji: 🐼
|
4 |
colorFrom: gray
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -1,52 +1,58 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
from huggingface_hub import login, InferenceClient
|
4 |
import spaces
|
|
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
9 |
|
10 |
# Predefined list of models to compare (can be expanded)
|
11 |
model_options = {
|
12 |
-
"
|
13 |
-
"Qwen-2.5-1.5B-Instruct": "Qwen/Qwen2.5-1.5B-Instruct",
|
14 |
-
"Llama-3.2-1B": "meta-llama/Llama-3.2-1B",
|
15 |
-
"DeepSeek-V2.5": "deepseek-ai/DeepSeek-V2.5",
|
16 |
-
"Athene-V2-Chat": "Nexusflow/Athene-V2-Chat",
|
17 |
}
|
18 |
|
19 |
-
# Initialize clients for models
|
20 |
-
clients = {name: InferenceClient(repo_id) for name, repo_id in model_options.items()}
|
21 |
-
|
22 |
# Define the response function
|
23 |
@spaces.GPU
|
24 |
-
def
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Build Gradio app
|
52 |
def create_demo():
|
@@ -77,31 +83,34 @@ def create_demo():
|
|
77 |
# Model Selection Section
|
78 |
selected_models = gr.CheckboxGroup(
|
79 |
choices=list(model_options.keys()),
|
80 |
-
label="Select exactly two
|
81 |
-
value=["
|
82 |
)
|
83 |
|
84 |
# Dynamic Response Section
|
85 |
response_box1 = gr.Textbox(label="Response from Model 1", interactive=False)
|
86 |
-
response_box2 = gr.Textbox(label="Response from Model 2", interactive=False)
|
87 |
|
88 |
# Function to generate responses
|
89 |
def generate_responses(
|
90 |
message, system_message, max_tokens, temperature, top_p, selected_models
|
91 |
):
|
92 |
-
if len(selected_models) != 2:
|
93 |
-
|
94 |
-
responses =
|
95 |
-
message, [], system_message, max_tokens, temperature, top_p, selected_models
|
|
|
|
|
96 |
)
|
97 |
-
return responses.get(selected_models[0], ""), responses.get(selected_models[1], "")
|
98 |
-
|
99 |
# Add a button for generating responses
|
100 |
submit_button = gr.Button("Generate Responses")
|
101 |
submit_button.click(
|
102 |
generate_responses,
|
103 |
inputs=[user_message, system_message, max_tokens, temperature, top_p, selected_models],
|
104 |
-
outputs=[response_box1, response_box2], # Link to response boxes
|
|
|
105 |
)
|
106 |
|
107 |
return demo
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import spaces
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
import logging
|
6 |
|
7 |
+
# Configure logging/logger
|
8 |
+
logging.basicConfig(
|
9 |
+
level=logging.INFO,
|
10 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
11 |
+
)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
|
14 |
# Predefined list of models to compare (can be expanded)
|
15 |
model_options = {
|
16 |
+
"Foundation-Sec-8B": pipeline("text-generation", model="fdtn-ai/Foundation-Sec-8B"),
|
|
|
|
|
|
|
|
|
17 |
}
|
18 |
|
|
|
|
|
|
|
19 |
# Define the response function
|
20 |
@spaces.GPU
|
21 |
+
def generate_text_local(model_pipeline, prompt):
|
22 |
+
"""Local text generation"""
|
23 |
+
try:
|
24 |
+
logger.info(f"Running local text generation with {model_pipeline.path}")
|
25 |
+
|
26 |
+
# Move model to GPU (entire pipeline)
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
model_pipeline.model = model_pipeline.model.to(device)
|
29 |
+
|
30 |
+
# Set other pipeline components to use GPU
|
31 |
+
if hasattr(model_pipeline, "device"):
|
32 |
+
model_pipeline.device = device
|
33 |
+
|
34 |
+
# Record device information
|
35 |
+
device_info = next(model_pipeline.model.parameters()).device
|
36 |
+
logger.info(f"Model {model_pipeline.path} is running on device: {device_info}")
|
37 |
+
|
38 |
+
outputs = model_pipeline(
|
39 |
+
prompt,
|
40 |
+
max_new_tokens=3, # = model.generate(max_new_tokens=3, …)
|
41 |
+
do_sample=True,
|
42 |
+
temperature=0.1,
|
43 |
+
top_p=0.9,
|
44 |
+
clean_up_tokenization_spaces=True, # echo 部分を整形
|
45 |
+
)
|
46 |
|
47 |
+
# Move model back to CPU
|
48 |
+
model_pipeline.model = model_pipeline.model.to("cpu")
|
49 |
+
if hasattr(model_pipeline, "device"):
|
50 |
+
model_pipeline.device = torch.device("cpu")
|
51 |
+
|
52 |
+
return outputs[0]["generated_text"].replace(prompt, "").strip()
|
53 |
+
except Exception as e:
|
54 |
+
logger.error(f"Error in local text generation with {model_pipeline.path}: {str(e)}")
|
55 |
+
return f"Error: {str(e)}"
|
56 |
|
57 |
# Build Gradio app
|
58 |
def create_demo():
|
|
|
83 |
# Model Selection Section
|
84 |
selected_models = gr.CheckboxGroup(
|
85 |
choices=list(model_options.keys()),
|
86 |
+
label="Select exactly two model to compare",
|
87 |
+
value=["Foundation-Sec-8B"], # Default models
|
88 |
)
|
89 |
|
90 |
# Dynamic Response Section
|
91 |
response_box1 = gr.Textbox(label="Response from Model 1", interactive=False)
|
92 |
+
#response_box2 = gr.Textbox(label="Response from Model 2", interactive=False)
|
93 |
|
94 |
# Function to generate responses
|
95 |
def generate_responses(
|
96 |
message, system_message, max_tokens, temperature, top_p, selected_models
|
97 |
):
|
98 |
+
#if len(selected_models) != 2:
|
99 |
+
# return "Error: Please select exactly two models to compare.", ""
|
100 |
+
responses = generate_text_local(
|
101 |
+
#message, [], system_message, max_tokens, temperature, top_p, selected_models
|
102 |
+
selected_models[0],
|
103 |
+
message
|
104 |
)
|
105 |
+
#return responses.get(selected_models[0], ""), responses.get(selected_models[1], "")
|
106 |
+
return responses
|
107 |
# Add a button for generating responses
|
108 |
submit_button = gr.Button("Generate Responses")
|
109 |
submit_button.click(
|
110 |
generate_responses,
|
111 |
inputs=[user_message, system_message, max_tokens, temperature, top_p, selected_models],
|
112 |
+
#outputs=[response_box1, response_box2], # Link to response boxes
|
113 |
+
outputs=[response_box1]
|
114 |
)
|
115 |
|
116 |
return demo
|