Spaces:
Running
on
Zero
Running
on
Zero
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
-
from transformers import pipeline,
|
4 |
import torch
|
5 |
import logging
|
|
|
6 |
|
7 |
# Configure logging/logger
|
8 |
logging.basicConfig(
|
@@ -18,6 +19,7 @@ pipelines = {}
|
|
18 |
# Predefined list of models to compare (can be expanded)
|
19 |
model_options = {
|
20 |
"Foundation-Sec-8B": "fdtn-ai/Foundation-Sec-8B",
|
|
|
21 |
}
|
22 |
|
23 |
# Initialize models at startup
|
@@ -75,11 +77,10 @@ def create_demo():
|
|
75 |
|
76 |
# Input Section
|
77 |
with gr.Row():
|
78 |
-
|
79 |
value="You are a helpful assistant providing answers for technical and customer support queries.",
|
80 |
-
label="
|
81 |
)
|
82 |
-
user_message = gr.Textbox(label="Your question", placeholder="Type your question here...")
|
83 |
|
84 |
with gr.Row():
|
85 |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
@@ -97,38 +98,51 @@ def create_demo():
|
|
97 |
|
98 |
# Dynamic Response Section
|
99 |
response_box1 = gr.Textbox(label="Response from Model 1", interactive=False)
|
100 |
-
|
101 |
|
102 |
# Function to generate responses
|
103 |
def generate_responses(
|
104 |
-
message,
|
105 |
):
|
106 |
-
|
107 |
-
|
108 |
|
109 |
if len(selected_models) == 0:
|
110 |
-
return "Error: Please select at least one model"
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
return response
|
124 |
|
125 |
# Add a button for generating responses
|
126 |
submit_button = gr.Button("Generate Responses")
|
127 |
submit_button.click(
|
128 |
generate_responses,
|
129 |
-
inputs=[
|
130 |
-
|
131 |
-
outputs=[response_box1]
|
132 |
)
|
133 |
|
134 |
return demo
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
+
from transformers import pipeline, AutoTokenizer
|
4 |
import torch
|
5 |
import logging
|
6 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
7 |
|
8 |
# Configure logging/logger
|
9 |
logging.basicConfig(
|
|
|
19 |
# Predefined list of models to compare (can be expanded)
|
20 |
model_options = {
|
21 |
"Foundation-Sec-8B": "fdtn-ai/Foundation-Sec-8B",
|
22 |
+
"Llama-3.1-8B": "meta-llama/Llama-3.1-8B",
|
23 |
}
|
24 |
|
25 |
# Initialize models at startup
|
|
|
77 |
|
78 |
# Input Section
|
79 |
with gr.Row():
|
80 |
+
prompt = gr.Textbox(
|
81 |
value="You are a helpful assistant providing answers for technical and customer support queries.",
|
82 |
+
label="Prompt"
|
83 |
)
|
|
|
84 |
|
85 |
with gr.Row():
|
86 |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
|
|
98 |
|
99 |
# Dynamic Response Section
|
100 |
response_box1 = gr.Textbox(label="Response from Model 1", interactive=False)
|
101 |
+
response_box2 = gr.Textbox(label="Response from Model 2", interactive=False)
|
102 |
|
103 |
# Function to generate responses
|
104 |
def generate_responses(
|
105 |
+
message, prompt, max_tokens, temperature, top_p, selected_models
|
106 |
):
|
107 |
+
if len(selected_models) != 2:
|
108 |
+
return "Error: Please select exactly two models to compare.", ""
|
109 |
|
110 |
if len(selected_models) == 0:
|
111 |
+
return "Error: Please select at least one model", ""
|
112 |
|
113 |
+
# 選択されたモデルの結果を格納する辞書
|
114 |
+
responses = {}
|
115 |
+
futures_to_model = {} # 各futureとモデルを紐づけるための辞書
|
116 |
+
|
117 |
+
with ThreadPoolExecutor(max_workers=len(selected_models)) as executor:
|
118 |
+
# 各モデルに対してタスクを提出
|
119 |
+
futures = []
|
120 |
+
for model_name in selected_models:
|
121 |
+
model_path = model_options[model_name]
|
122 |
+
future = executor.submit(
|
123 |
+
generate_text_local,
|
124 |
+
model_path,
|
125 |
+
prompt,
|
126 |
+
max_tokens,
|
127 |
+
temperature,
|
128 |
+
top_p
|
129 |
+
)
|
130 |
+
futures.append(future)
|
131 |
+
futures_to_model[future] = model_name
|
132 |
+
|
133 |
+
# 結果の収集
|
134 |
+
for future in as_completed(futures):
|
135 |
+
model_name = futures_to_model[future]
|
136 |
+
responses[model_name] = future.result()
|
137 |
|
138 |
+
return responses.get(selected_models[0], ""), responses.get(selected_models[1], "")
|
|
|
139 |
|
140 |
# Add a button for generating responses
|
141 |
submit_button = gr.Button("Generate Responses")
|
142 |
submit_button.click(
|
143 |
generate_responses,
|
144 |
+
inputs=[prompt, max_tokens, temperature, top_p, selected_models],
|
145 |
+
outputs=[response_box1, response_box2], # Link to response boxes
|
|
|
146 |
)
|
147 |
|
148 |
return demo
|