Spaces:
Running
on
Zero
Running
on
Zero
# This file is modified from https://github.com/haotian-liu/LLaVA/ | |
from abc import abstractmethod | |
import torch | |
import torch.nn as nn | |
from accelerate.hooks import add_hook_to_module | |
from transformers import AutoConfig, PreTrainedModel | |
from transformers.image_processing_utils import BaseImageProcessor | |
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled | |
class VisionTower(nn.Module): | |
def __init__(self, vision_tower, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_tower_name = vision_tower | |
self.select_layer = getattr(args, "mm_vision_select_layer", -2) | |
self.select_feature = getattr(args, "mm_vision_select_feature", "patch") | |
self.cfg_only = None | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[self.select_layer] | |
if self.select_feature == "patch": | |
image_features = image_features[:, 1:] | |
elif self.select_feature == "cls_patch": | |
image_features = image_features | |
else: | |
raise ValueError(f"Unexpected select feature: {self.select_feature}") | |
return image_features | |
def _maybe_resize_pos_embeds( | |
self, | |
model: PreTrainedModel, | |
image_processor: BaseImageProcessor, | |
resolution: int = -1, | |
interpolate_mode: str = "linear", | |
): | |
if resolution in [model.config.image_size, -1]: | |
return | |
print(f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ...") | |
embeddings = model.vision_model.embeddings | |
patch_size = embeddings.patch_size | |
num_new_tokens = int((resolution // patch_size) ** 2) | |
old_embeddings = embeddings.position_embedding | |
match interpolate_mode: | |
case "linear": | |
## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M | |
## Step 2: Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)] | |
import torch | |
import torch.nn as nn | |
if is_deepspeed_zero3_enabled(): | |
import deepspeed | |
with deepspeed.zero.GatheredParameters([old_embeddings.weight], modifier_rank=None): | |
old_num_tokens, old_embedding_dim = old_embeddings.weight.size() | |
else: | |
old_num_tokens, old_embedding_dim = old_embeddings.weight.size() | |
new_embeddings = nn.Embedding( | |
num_new_tokens, | |
old_embedding_dim, | |
dtype=old_embeddings.weight.dtype, | |
device=old_embeddings.weight.device, | |
) | |
mapped_indices = ( | |
torch.arange(num_new_tokens).to(old_embeddings.weight.device) | |
/ (num_new_tokens - 1) | |
* (old_num_tokens - 1) | |
) | |
floor_indices = torch.clamp(mapped_indices.floor().long(), min=0, max=old_num_tokens - 1) | |
ceil_indices = torch.clamp(mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1) | |
if is_deepspeed_zero3_enabled(): | |
params = [old_embeddings.weight, new_embeddings.weight] | |
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): | |
interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[ | |
ceil_indices, : | |
] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :] | |
else: | |
interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[ | |
ceil_indices, : | |
] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :] | |
new_embeddings.weight.data = interpolated_embeds | |
case _: | |
raise NotImplementedError | |
if hasattr(old_embeddings, "_hf_hook"): | |
hook = old_embeddings._hf_hook | |
add_hook_to_module(new_embeddings, hook) | |
new_embeddings.requires_grad_(old_embeddings.weight.requires_grad) | |
## update vision encoder's configurations | |
model.config.image_size = resolution | |
if hasattr(image_processor, "crop_size"): | |
# CLIP vision tower | |
image_processor.crop_size = resolution | |
else: | |
# SIGLIP vision tower | |
assert hasattr(image_processor, "size") | |
image_processor.size = {"height": resolution, "width": resolution} | |
## TODO define a '_reinitialize' method for VisionTower | |
embeddings.position_embedding = new_embeddings | |
embeddings.image_size = resolution | |
embeddings.num_patches = embeddings.num_positions = num_new_tokens | |
embeddings.position_ids = ( | |
torch.arange(embeddings.num_positions).expand((1, -1)).to(old_embeddings.weight.device) | |
) | |
def forward(self, images, **kwargs): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_tower( | |
image.to(device=self.device, dtype=self.dtype).unsqueeze(0), | |
output_hidden_states=True, **kwargs, | |
) | |
image_feature = self.feature_select(image_forward_out).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_tower( | |
images.to(device=self.device, dtype=self.dtype), | |
output_hidden_states=True, **kwargs, | |
) | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_tower.dtype | |
def device(self): | |
return self.vision_tower.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_tower.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |