Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Image processor class for RADIO.""" | |
import math | |
from copy import deepcopy | |
from itertools import product | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL | |
from PIL.Image import Image | |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict | |
from transformers.image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format | |
from transformers.image_utils import ( | |
IMAGENET_DEFAULT_MEAN, | |
IMAGENET_DEFAULT_STD, | |
ChannelDimension, | |
ImageInput, | |
PILImageResampling, | |
get_image_size, | |
infer_channel_dimension_format, | |
is_scaled_image, | |
make_list_of_images, | |
to_numpy_array, | |
valid_images, | |
) | |
from transformers.utils import ( | |
TensorType, | |
is_tf_available, | |
is_torch_available, | |
is_torchvision_available, | |
logging, | |
requires_backends, | |
) | |
if is_torch_available(): | |
import torch | |
import torch.nn.functional as F | |
if is_torchvision_available(): | |
from torchvision.ops.boxes import batched_nms | |
if is_tf_available(): | |
import tensorflow as tf | |
from tensorflow.experimental import numpy as tnp | |
from ...tf_utils import flatten, shape_list | |
logger = logging.get_logger(__name__) | |
def rank_print(s): | |
rank = torch.distributed.get_rank() if torch.distributed.is_initialized() else 0 | |
print(f"[Rank {rank}] {s}") | |
class ImageProcessor(BaseImageProcessor): | |
r""" | |
Constructs an image processor. | |
Args: | |
do_resize (`bool`, *optional*, defaults to `True`): | |
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the | |
`do_resize` parameter in the `preprocess` method. | |
size (`dict`, *optional*, defaults to `{"longest_edge": 1024}`): | |
Size of the output image after resizing. If "longest_edge" is specified, resizes the longest edge of the image to match | |
`size["longest_edge"]` while maintaining the aspect ratio. If "width" and "height" are specified, resizes the image | |
to that size, possibly changing the aspect ratio. Can be overridden by the `size` parameter in the | |
`preprocess` method. | |
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): | |
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the | |
`preprocess` method. | |
do_rescale (`bool`, *optional*, defaults to `True`): | |
Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the | |
`do_rescale` parameter in the `preprocess` method. | |
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): | |
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be | |
overridden by the `rescale_factor` parameter in the `preprocess` method. | |
do_normalize (`bool`, *optional*, defaults to `True`): | |
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` | |
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. | |
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): | |
Mean to use if normalizing the image. This is a float or list of floats the length of the number of | |
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be | |
overridden by the `image_mean` parameter in the `preprocess` method. | |
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): | |
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the | |
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. | |
Can be overridden by the `image_std` parameter in the `preprocess` method. | |
do_pad (`bool`, *optional*, defaults to `True`): | |
Whether to pad the image to the specified `pad_size`. Can be overridden by the `do_pad` parameter in the | |
`preprocess` method. | |
pad_size (`dict`, *optional*, defaults to `{"height": 1024, "width": 1024}`): | |
Size of the output image after padding. Can be overridden by the `pad_size` parameter in the `preprocess` | |
method. | |
pad_value (`float` or `Iterable[float]`, *optional*, defaults to `0.`): | |
Value of padded pixels. | |
pad_multiple (`int`, *optional*, defaults to `None`): | |
Pad to a multiple of specified number. | |
do_convert_rgb (`bool`, *optional*, defaults to `True`): | |
Whether to convert the image to RGB. | |
""" | |
model_input_names = ["pixel_values"] | |
def __init__( | |
self, | |
do_resize: bool = True, | |
size: Dict[str, int] = None, | |
resample: PILImageResampling = PILImageResampling.BILINEAR, | |
do_rescale: bool = True, | |
rescale_factor: Union[int, float] = 1 / 255, | |
do_normalize: bool = True, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_pad: bool = True, | |
pad_size: int = None, | |
pad_multiple: int = None, | |
pad_value: Optional[Union[float, List[float]]] = 0., | |
do_convert_rgb: bool = True, | |
**kwargs, | |
) -> None: | |
super().__init__(**kwargs) | |
x = 0 | |
size = size if size is not None else {"longest_edge": 1024} | |
size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size | |
if pad_size is not None and pad_multiple is not None: | |
raise ValueError("pad_size and pad_multiple should not be set at the same time.") | |
pad_size = pad_size if pad_size is not None else {"height": 1024, "width": 1024} if pad_multiple is not None else None | |
if do_pad: | |
pad_size = get_size_dict(pad_size, default_to_square=True) | |
self.do_resize = do_resize | |
self.size = size | |
self.resample = resample | |
self.do_rescale = do_rescale | |
self.rescale_factor = rescale_factor | |
self.do_normalize = do_normalize | |
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN | |
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD | |
self.do_pad = do_pad | |
self.pad_multiple = pad_multiple | |
self.pad_size = pad_size | |
self.pad_value = tuple(pad_value) if isinstance(pad_value, list) else pad_value | |
self.do_convert_rgb = do_convert_rgb | |
self._valid_processor_keys = [ | |
"images", | |
"segmentation_maps", | |
"do_resize", | |
"size", | |
"resample", | |
"do_rescale", | |
"rescale_factor", | |
"do_normalize", | |
"image_mean", | |
"image_std", | |
"do_pad", | |
"pad_size", | |
"do_convert_rgb", | |
"return_tensors", | |
"data_format", | |
"input_data_format", | |
] | |
def pad_image( | |
self, | |
image: np.ndarray, | |
pad_size: Dict[str, int], | |
data_format: Optional[Union[str, ChannelDimension]] = None, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
**kwargs, | |
) -> np.ndarray: | |
""" | |
Pad an image to `(pad_size["height"], pad_size["width"])` to the right and bottom. | |
Args: | |
image (`np.ndarray`): | |
Image to pad. | |
pad_size (`Dict[str, int]`): | |
Size of the output image after padding. | |
data_format (`str` or `ChannelDimension`, *optional*): | |
The data format of the image. Can be either "channels_first" or "channels_last". If `None`, the | |
`data_format` of the `image` will be used. | |
input_data_format (`str` or `ChannelDimension`, *optional*): | |
The channel dimension format of the input image. If not provided, it will be inferred. | |
""" | |
output_height, output_width = pad_size["height"], pad_size["width"] | |
input_height, input_width = get_image_size(image, channel_dim=input_data_format) | |
pad_width = output_width - input_width | |
pad_height = output_height - input_height | |
padded_image = pad( | |
image, | |
((0, pad_height), (0, pad_width)), | |
data_format=data_format, | |
input_data_format=input_data_format, | |
constant_values=self.pad_value, | |
**kwargs, | |
) | |
return padded_image | |
def _get_preprocess_shape(self, old_shape: Tuple[int, int], longest_edge: int): | |
""" | |
Compute the output size given input size and target long side length. | |
""" | |
oldh, oldw = old_shape | |
scale = longest_edge * 1.0 / max(oldh, oldw) | |
newh, neww = oldh * scale, oldw * scale | |
newh = int(newh + 0.5) | |
neww = int(neww + 0.5) | |
return (newh, neww) | |
def resize( | |
self, | |
image: np.ndarray, | |
size: Dict[str, int], | |
resample: PILImageResampling = PILImageResampling.BICUBIC, | |
data_format: Optional[Union[str, ChannelDimension]] = None, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
**kwargs, | |
) -> np.ndarray: | |
""" | |
Resize an image to `(size["height"], size["width"])`. | |
Args: | |
image (`np.ndarray`): | |
Image to resize. | |
size (`Dict[str, int]`): | |
Dictionary in the format `{"longest_edge": int}` or `{"width": int, "height": int}` specifying the size | |
of the output image. If "longest_edge" is specified, resizes the longest edge of the image to match | |
`size["longest_edge"]` while maintaining the aspect ratio. If "width" and "height" are specified, resizes the image | |
to that size, possibly changing the aspect ratio. | |
resample: | |
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. | |
data_format (`ChannelDimension` or `str`, *optional*): | |
The channel dimension format for the output image. If unset, the channel dimension format of the input | |
image is used. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
input_data_format (`ChannelDimension` or `str`, *optional*): | |
The channel dimension format for the input image. If unset, the channel dimension format is inferred | |
from the input image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
Returns: | |
`np.ndarray`: The resized image. | |
""" | |
size = get_size_dict(size) | |
if "longest_edge" not in size: | |
if "width" not in size or "height" not in size: | |
raise ValueError(f"The `size` dictionary must contain the key `longest_edge`, or `width` and `height`. Got {size.keys()}") | |
input_size = get_image_size(image, channel_dim=input_data_format) | |
if "longest_edge" in size: | |
output_height, output_width = self._get_preprocess_shape(input_size, size["longest_edge"]) | |
else: | |
output_height, output_width = size["height"], size["width"] | |
return resize( | |
image, | |
size=(output_height, output_width), | |
resample=resample, | |
data_format=data_format, | |
input_data_format=input_data_format, | |
**kwargs, | |
) | |
def _preprocess( | |
self, | |
image: ImageInput, | |
do_resize: bool, | |
do_rescale: bool, | |
do_normalize: bool, | |
size: Optional[Dict[str, int]] = None, | |
resample: PILImageResampling = None, | |
rescale_factor: Optional[float] = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_pad: Optional[bool] = None, | |
pad_size: Optional[Dict[str, int]] = None, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
): | |
if do_resize: | |
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) | |
reshaped_input_size = get_image_size(image, channel_dim=input_data_format) | |
if do_rescale: | |
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) | |
if do_normalize: | |
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) | |
if do_pad: | |
if self.pad_multiple: | |
h, w = get_image_size(image, channel_dim=input_data_format) | |
pad_size = { | |
"height": math.ceil(h / self.pad_multiple) * self.pad_multiple, | |
"width": math.ceil(w / self.pad_multiple) * self.pad_multiple, | |
} | |
image = self.pad_image(image=image, pad_size=pad_size, input_data_format=input_data_format) | |
return image, reshaped_input_size | |
def _preprocess_image( | |
self, | |
image: ImageInput, | |
do_resize: Optional[bool] = None, | |
size: Dict[str, int] = None, | |
resample: PILImageResampling = None, | |
do_rescale: bool = None, | |
rescale_factor: Optional[float] = None, | |
do_normalize: Optional[bool] = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_pad: Optional[bool] = None, | |
pad_size: Optional[Dict[str, int]] = None, | |
do_convert_rgb: Optional[bool] = None, | |
data_format: Optional[Union[str, ChannelDimension]] = None, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
) -> Tuple[np.ndarray, Tuple[int, int], Tuple[int, int]]: | |
#image = to_numpy_array(image) | |
# import time | |
# if int(time.time()*1000) % 10 == 0: | |
# # create an PIL image of size 1x1 | |
# image = PIL.Image.new('RGB', (1, 1)) | |
if isinstance(image, Image): | |
# PIL always uses Channels Last. | |
input_data_format = ChannelDimension.LAST | |
# PIL RGBA images are converted to RGB | |
#mode_before = image.mode | |
if do_convert_rgb: | |
image = convert_to_rgb(image) | |
# All transformations expect numpy arrays. | |
image_ = image | |
image = to_numpy_array(image) | |
# if isinstance(image_, np.ndarray): | |
# rank_print(f"preprocess image type={type(image_)} shape={image_.shape} array shape={image.shape}") | |
# elif isinstance(image_, Image): | |
# rank_print(f"preprocessimage type={type(image_)} size={image_.size} mode={image_.mode} array shape={image.shape}") | |
# else: | |
# rank_print(f"preprocess unknown image type={type(image_)} array shape={image.shape}") | |
if len(image.shape) == 2: | |
h, w = image.shape | |
ret = np.empty((h, w, 3), dtype=np.uint8) | |
ret[:, :, 0] = image | |
ret[:, :, 1] = image | |
ret[:, :, 2] = image | |
image = ret | |
rank_print(f"preprocess new image shape={image.shape}") | |
elif len(image.shape) == 3 and image.shape[-1] == 1: | |
ret = np.empty((h, w, 3), dtype=np.uint8) | |
ret[:, :, 0] = image[:, :, 0] | |
ret[:, :, 1] = image[:, :, 0] | |
ret[:, :, 2] = image[:, :, 0] | |
image = ret | |
rank_print(f"preprocess new image shape={image.shape}") | |
if is_scaled_image(image) and do_rescale: | |
logger.warning_once( | |
"It looks like you are trying to rescale already rescaled images. If the input" | |
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." | |
) | |
if input_data_format is None: | |
input_data_format = infer_channel_dimension_format(image) | |
original_size = get_image_size(image, channel_dim=input_data_format) | |
image, reshaped_input_size = self._preprocess( | |
image=image, | |
do_resize=do_resize, | |
size=size, | |
resample=resample, | |
do_rescale=do_rescale, | |
rescale_factor=rescale_factor, | |
do_normalize=do_normalize, | |
image_mean=image_mean, | |
image_std=image_std, | |
do_pad=do_pad, | |
pad_size=pad_size, | |
input_data_format=input_data_format, | |
) | |
if data_format is not None: | |
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) | |
# rank_print(f"preprocess original_size={original_size} reshaped_input_size={reshaped_input_size} image shape={image.shape} type={type(image)}") | |
# if image is a single channel convert to rgb | |
if do_convert_rgb and image.shape[0] == 1: | |
c, h, w = image.shape | |
ret = np.empty((3, h, w), dtype=np.uint8) | |
ret[0, :, :] = image[0, :, :] | |
ret[1, :, :] = image[0, :, :] | |
ret[2, :, :] = image[0, :, :] | |
image = ret | |
rank_print(f"preprocess final: {image.shape}") | |
return image, original_size, reshaped_input_size | |
def preprocess( | |
self, | |
images: ImageInput, | |
do_resize: Optional[bool] = None, | |
size: Optional[Dict[str, int]] = None, | |
resample: Optional["PILImageResampling"] = None, | |
do_rescale: Optional[bool] = None, | |
rescale_factor: Optional[Union[int, float]] = None, | |
do_normalize: Optional[bool] = None, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_pad: Optional[bool] = None, | |
pad_size: Optional[Dict[str, int]] = None, | |
do_convert_rgb: Optional[bool] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
data_format: ChannelDimension = ChannelDimension.FIRST, | |
input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
**kwargs, | |
): | |
""" | |
Preprocess an image or batch of images. | |
Args: | |
images (`ImageInput`): | |
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | |
passing in images with pixel values between 0 and 1, set `do_rescale=False`. | |
do_resize (`bool`, *optional*, defaults to `self.do_resize`): | |
Whether to resize the image. | |
size (`Dict[str, int]`, *optional*, defaults to `self.size`): | |
Controls the size of the image after `resize`. The longest edge of the image is resized to | |
`size["longest_edge"]` whilst preserving the aspect ratio. | |
resample (`PILImageResampling`, *optional*, defaults to `self.resample`): | |
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. | |
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | |
Whether to rescale the image pixel values by rescaling factor. | |
rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`): | |
Rescale factor to apply to the image pixel values. | |
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | |
Whether to normalize the image. | |
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | |
Image mean to normalize the image by if `do_normalize` is set to `True`. | |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | |
Image standard deviation to normalize the image by if `do_normalize` is set to `True`. | |
do_pad (`bool`, *optional*, defaults to `self.do_pad`): | |
Whether to pad the image. | |
pad_size (`Dict[str, int]`, *optional*, defaults to `self.pad_size`): | |
Controls the size of the padding applied to the image. The image is padded to `pad_size["height"]` and | |
`pad_size["width"]` if `do_pad` is set to `True`. | |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | |
Whether to convert the image to RGB. | |
return_tensors (`str` or `TensorType`, *optional*): | |
The type of tensors to return. Can be one of: | |
- Unset: Return a list of `np.ndarray`. | |
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. | |
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | |
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. | |
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. | |
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): | |
The channel dimension format for the output image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- Unset: Use the channel dimension format of the input image. | |
input_data_format (`ChannelDimension` or `str`, *optional*): | |
The channel dimension format for the input image. If unset, the channel dimension format is inferred | |
from the input image. Can be one of: | |
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | |
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | |
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | |
""" | |
do_resize = do_resize if do_resize is not None else self.do_resize | |
size = size if size is not None else self.size | |
size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size | |
resample = resample if resample is not None else self.resample | |
do_rescale = do_rescale if do_rescale is not None else self.do_rescale | |
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor | |
do_normalize = do_normalize if do_normalize is not None else self.do_normalize | |
image_mean = image_mean if image_mean is not None else self.image_mean | |
image_std = image_std if image_std is not None else self.image_std | |
do_pad = do_pad if do_pad is not None else self.do_pad | |
pad_size = pad_size if pad_size is not None else self.pad_size | |
if do_pad: | |
pad_size = get_size_dict(pad_size, default_to_square=True) | |
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb | |
images = make_list_of_images(images) | |
if not valid_images(images): | |
raise ValueError( | |
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | |
"torch.Tensor, tf.Tensor or jax.ndarray." | |
) | |
images, original_sizes, reshaped_input_sizes = zip( | |
*( | |
self._preprocess_image( | |
image=img, | |
do_resize=do_resize, | |
size=size, | |
resample=resample, | |
do_rescale=do_rescale, | |
rescale_factor=rescale_factor, | |
do_normalize=do_normalize, | |
image_mean=image_mean, | |
image_std=image_std, | |
do_pad=do_pad, | |
pad_size=pad_size, | |
do_convert_rgb=do_convert_rgb, | |
data_format=data_format, | |
input_data_format=input_data_format, | |
) | |
for img in images | |
) | |
) | |
data = { | |
"pixel_values": images, | |
"original_sizes": original_sizes, | |
"reshaped_input_sizes": reshaped_input_sizes, | |
} | |
return BatchFeature(data=data, tensor_type=return_tensors) | |