File size: 9,584 Bytes
e19aac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import torch.nn as nn
import os
import warnings
from typing import Optional, Union, List, Tuple
from transformers import (
    AutoTokenizer,
    AutoModel,
    AutoModelForCausalLM,
    AutoConfig,
    BitsAndBytesConfig,
    PretrainedConfig,
    PreTrainedModel,
    LlamaConfig,
    LlamaModel,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers import PretrainedConfig

from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
from .language_model.llava_llama import LlavaLlamaConfig
# TODO: we may move LlavaConfig to configuration_llava.py
# from model.configuration_llava import LlavaConfig

class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel):
    config_class = LlavaLlamaConfig
    main_input_name = "input_embeds"
    supports_gradient_checkpointing = True

    def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None:
        super().__init__(config)
        self.init_vlm(config=config, *args, **kwargs)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: bool = None,
        **kwargs,
    ):
        if hasattr(cls, "load_pretrained"):
            return cls.load_pretrained(pretrained_model_name_or_path,
                                       *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token,
                                       revision=revision, use_safetensors=use_safetensors, **kwargs
                                       )
        return super(LlavaLlamaModel).from_pretrained(pretrained_model_name_or_path,
                                                      *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token,
                                                      revision=revision, use_safetensors=use_safetensors, **kwargs)

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        images: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        self.freezed_module_patch()
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids, position_ids, attention_mask, past_key_values, labels, images
            )
        # Note (kentang-mit@): we have a unit test for this function.
        if self.training:
            (
                _,
                new_position_ids,
                new_attention_mask,
                _,
                new_inputs_embeds,
                new_labels,
                sorted_seqlens_in_batch,
            ) = self.repack_multimodal_data(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
            )
            new_input_ids = None
            past_key_values = None
        else:
            new_attention_mask = attention_mask
            new_position_ids = position_ids
            new_inputs_embeds = inputs_embeds
            new_labels = labels
            sorted_seqlens_in_batch = attention_mask.sum(-1).int()
            new_input_ids = input_ids

        outputs = self.llm.forward(
            input_ids=new_input_ids,
            attention_mask=new_attention_mask,
            position_ids=new_position_ids,
            past_key_values=past_key_values,
            inputs_embeds=new_inputs_embeds,
            labels=new_labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            seqlens_in_batch=sorted_seqlens_in_batch,
        )
        return outputs

    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.FloatTensor] = None,
        images: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        **generation_kwargs,
    ):
        if images is not None:
            (
                _,
                _,
                attention_mask,
                _,
                inputs_embeds,
                _,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids, None, attention_mask, None, None, images
            )
        else:
            inputs_embeds = self.get_input_embeddings()(input_ids)
        inputs_embeds = inputs_embeds.to(self.dtype)

        outputs = self.llm.generate(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            **generation_kwargs
        )
        return outputs


def disable_torch_init():
    """
    Disable the redundant torch default initialization to accelerate model creation.
    """
    import torch
    setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
    setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)


def load_pretrained_model(
    model_path,
    model_name,
    model_base=None,
    load_8bit=False,
    load_4bit=False,
    device_map="auto",
    device="cuda",
    **kwargs,
):
    kwargs = {"device_map": device_map, **kwargs}

    if device != "cuda":
        kwargs["device_map"] = {"": device}

    if load_8bit:
        kwargs["load_in_8bit"] = True
    elif load_4bit:
        kwargs["load_in_4bit"] = True
        kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    else:
        kwargs["torch_dtype"] = torch.float16

    config = AutoConfig.from_pretrained(model_path)
    config.resume_path = model_path
    prepare_config_for_eval(config, kwargs)

    model = LlavaLlamaModel(
        config=config,
        low_cpu_mem_usage=True,
        **kwargs
    )
    tokenizer = model.tokenizer

    model.eval()
    
    # mm_use_im_start_end = getattr(
    #     model.config, "mm_use_im_start_end", False)
    # mm_use_im_patch_token = getattr(
    #     model.config, "mm_use_im_patch_token", True)
    # if mm_use_im_patch_token:
    #     tokenizer.add_tokens(
    #         [DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    # if mm_use_im_start_end:
    #     tokenizer.add_tokens(
    #         [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
    #     )

    model.resize_token_embeddings(len(tokenizer))
    vision_tower = model.get_vision_tower()
    vision_tower.to(device=device, dtype=torch.float16)
    mm_projector = model.get_mm_projector()
    mm_projector.to(device=device, dtype=torch.float16)
    context_provider = model.get_context_provider()
    if context_provider is not None:
        context_provider.to(device=device, dtype=torch.float16)
    image_processor = vision_tower.image_processor

    if hasattr(model.llm.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, image_processor, context_len


def parse_model_name_or_path(config: PretrainedConfig, model_name="llm", suffix="_cfg"):
    target_model = f"{model_name}{suffix}"
    target_cfg = getattr(config, target_model, None)

    if isinstance(target_cfg, str):
        return target_cfg
    elif isinstance(target_cfg, dict):
        return target_cfg["architectures"][0]
    else:
        raise ValueError(f"Invalid {target_model} configuration!")


def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict):
    try:
        # compatible with deprecated config convention
        if getattr(config, "vision_tower_cfg", None) is None:
            config.vision_tower_cfg = config.mm_vision_tower
    except AttributeError:
        raise ValueError(
            f"Invalid configuration! Cannot find vision_tower in config:\n{config}")

    config.model_dtype = kwargs.pop("torch_dtype").__str__()
    # siglip does not support device_map = "auto"
    vision_tower_name = parse_model_name_or_path(config, "vision_tower")
    if "siglip" in vision_tower_name.lower():
        kwargs["device_map"] = "cuda"


AutoConfig.register("llava_llama", LlavaLlamaConfig)
AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel)