Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,250 Bytes
e19aac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from PIL import Image
from io import BytesIO
import base64
import numpy as np
import os
import torch
from transformers import StoppingCriteria
from .constants import IMAGE_TOKEN_INDEX
import tempfile
from io import BytesIO
def get_frame_from_vcap(vidcap, num_frames=10, fps=None, frame_count=None):
import cv2
if fps == None or frame_count == None:
# if one of fps or frame_count is None, still recompute
fps = vidcap.get(cv2.CAP_PROP_FPS)
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
if fps == 0 or frame_count == 0:
print("Video file not found. return empty images.")
return [
Image.new("RGB", (720, 720)),
] * num_frames
duration = frame_count / fps
frame_interval = frame_count // num_frames
if frame_interval == 0 and frame_count <= 1:
print("frame_interval is equal to 0. return empty image.")
return [
Image.new("RGB", (720, 720)),
] * num_frames
# print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval)
images = []
count = 0
success = True
frame_indices = np.linspace(0, frame_count - 2, num_frames, dtype=int)
while success:
# print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval)
if frame_count >= num_frames:
success, frame = vidcap.read()
if count in frame_indices:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
if len(images) >= num_frames:
return images
count += 1
else:
# Left padding frames if the video is not long enough
success, frame = vidcap.read()
if success:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
count += 1
elif count >= 1:
width, height = images[-1].size
images = [Image.new("RGB", (width, height))] * \
(num_frames - len(images)) + images
print("padding frames:", (num_frames - len(images)))
return images
else:
break
raise ValueError(
"Did not find enough frames in the video. return empty image.")
def opencv_extract_frames(vpath_or_bytesio, frames=6, fps=None, frame_count=None):
"""
Extract frames from a video using OpenCV.
Args:
vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video.
frames (int): Number of frames to extract from the video.
Returns:
list: List of PIL Images extracted from the video.
Raises:
NotImplementedError: If the type of `vpath_or_bytesio` is not supported.
"""
import cv2
if isinstance(vpath_or_bytesio, str):
vidcap = cv2.VideoCapture(vpath_or_bytesio)
return get_frame_from_vcap(vidcap, frames, fps=fps, frame_count=frame_count)
elif isinstance(vpath_or_bytesio, (BytesIO,)):
# assuming mp4
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
temp_video.write(vpath_or_bytesio.read())
temp_video_name = temp_video.name
vidcap = cv2.VideoCapture(temp_video_name)
return get_frame_from_vcap(vidcap, frames, fps=fps, frame_count=frame_count)
else:
raise NotImplementedError(type(vpath_or_bytesio))
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def expand2square(pil_img, background_color):
"""
Expand the given PIL image to a square shape by adding padding.
Parameters:
- pil_img: The PIL image to be expanded.
- background_color: The color of the padding to be added.
Returns:
- The expanded PIL image.
If the image is already square, it is returned as is.
If the image is wider than it is tall, padding is added to the top and bottom.
If the image is taller than it is wide, padding is added to the left and right.
"""
width, height = pil_img.size
if pil_img.mode == 'L':
background_color = background_color[0]
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def process_image(image_file, data_args, image_folder, pil_preprocess_fn=None):
processor = data_args.image_processor
if isinstance(image_file, str):
if image_folder is not None:
image = Image.open(os.path.join(
image_folder, image_file)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
else:
# image is stored in bytearray
image = image_file.convert("RGB")
info = None
if pil_preprocess_fn is not None:
image = pil_preprocess_fn(image)
if isinstance(image, tuple):
image, info = image
if data_args.image_aspect_ratio == "resize":
if hasattr(data_args.image_processor, "crop_size"):
# CLIP vision tower
crop_size = data_args.image_processor.crop_size
else:
# SIGLIP vision tower
assert hasattr(data_args.image_processor, "size")
crop_size = data_args.image_processor.size
image = image.resize((crop_size["height"], crop_size["width"]))
if data_args.image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(
pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(
pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image, tuple(int(x * 255)
for x in processor.image_mean))
image = processor.preprocess(image, return_tensors="pt")[
"pixel_values"][0]
else:
# Using default behavior of the vision encoder
# For CLIP, default is central crop
# For Radio, default is central crop
# For Siglip, default is resize
# For InternVIT, default is resize
image = processor.preprocess(image, return_tensors="pt")[
"pixel_values"][0]
if info is not None:
return image, info
return image
def process_images(images, image_processor, model_cfg):
model_cfg.image_processor = image_processor
new_images = [process_image(image, model_cfg, None) for image in images]
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
# Note that newer VILA codebase adds an lstrip option that defaults to False, and the functionality is the same by default
def tokenizer_image_token(
prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None
):
prompt_chunks = [
tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if (
len(prompt_chunks) > 0
and len(prompt_chunks[0]) > 0
and prompt_chunks[0][0] == tokenizer.bos_token_id
):
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def is_gemma_tokenizer(tokenizer):
return "gemma" in tokenizer.__class__.__name__.lower()
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
self.max_keyword_len = 0
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if (
len(cur_keyword_ids) > 1
and cur_keyword_ids[0] == tokenizer.bos_token_id
):
cur_keyword_ids = cur_keyword_ids[1:]
if len(cur_keyword_ids) > self.max_keyword_len:
self.max_keyword_len = len(cur_keyword_ids)
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def call_for_batch(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
offset = min(output_ids.shape[1] -
self.start_len, self.max_keyword_len)
self.keyword_ids = [
keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids
]
for keyword_id in self.keyword_ids:
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
return True
outputs = self.tokenizer.batch_decode(
output_ids[:, -offset:], skip_special_tokens=True
)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
def __call__(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
outputs = []
for i in range(output_ids.shape[0]):
outputs.append(self.call_for_batch(
output_ids[i].unsqueeze(0), scores))
return all(outputs)
|