File size: 4,879 Bytes
f8e10f0
21dc656
 
 
 
 
f8e10f0
21dc656
 
 
 
 
 
6359d57
28306fd
21dc656
 
 
6359d57
 
 
 
 
f8e10f0
21dc656
 
 
6359d57
 
21dc656
 
f8e10f0
 
21dc656
 
 
 
 
 
 
 
 
 
 
 
f8e10f0
21dc656
 
f8e10f0
21dc656
 
 
 
 
f8e10f0
21dc656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8e10f0
21dc656
 
 
 
 
 
 
 
 
 
 
 
 
 
f8e10f0
21dc656
 
 
 
 
 
f8e10f0
21dc656
 
f8e10f0
21dc656
 
 
6359d57
21dc656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5277b0b
 
 
21dc656
 
 
 
6359d57
21dc656
f8e10f0
21dc656
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)


DESCRIPTION = '''
<div>
<h1 style="text-align: center;">HugCode</h1>
<p>CodeLLaMA sfted on <a href="https://huggingface.co./datasets/nuojohnchen/hugcode-codesft"><b>HugCode</b></a> data. Made in 2023.9. </p>
</div>
'''

# LICENSE = """
# <p/>
# ---
# Built with Meta Llama 3
# """

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">HugCode</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me code questions (English/Chinese).</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3")

model = AutoModelForCausalLM.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3", device_map="auto")  # to("cuda:0") 
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

@spaces.GPU(duration=120)
def chat_llama3_8b(message: str, 
              history: list, 
              temperature: float, 
              max_new_tokens: int
             ) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    # Build conversation as pure array format
    history_messages = []
    for user, assistant in history:
        history_messages.extend(assistant)
    
    # conversation = [
    #     message,          # ε½“ε‰ζΆˆζ―
    #     history_messages  # εŽ†ε²ζΆˆζ―ζ•°η»„
    # ]
    conversation = ""
    for user, assistant in history:
        conversation += f"User: {user}\nAssistant: {assistant}<|endoftext|>\n"
    conversation += f"User: {message}\nAssistant: "
    
    tokenizer.chat_template = "User:{query}\nAssistant:{response}<|endoftext|>"
    input_ids = tokenizer.encode(conversation, return_tensors="pt").to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.             
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        #print(outputs)
        yield "".join(outputs)
        

# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    gr.Markdown(DESCRIPTION)
    # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1, 
                      step=0.1,
                      value=0.95, 
                      label="Temperature", 
                      render=False),
            gr.Slider(minimum=128, 
                      maximum=4096,
                      step=1,
                      value=512, 
                      label="Max new tokens", 
                      render=False ),
            ],
        examples=[
            ['Implement a function to reverse a string.'],
            ['Sort a list of numbers in ascending order.'],
            ['Output Fibonacci sequence.']
            ],
        cache_examples=False,
                     )
    
    # gr.Markdown(LICENSE)
    
if __name__ == "__main__":
    demo.launch()