Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# ✅ Choose a public model that is available on Hugging Face
|
5 |
+
MODEL_NAME = "mistralai/Mistral-7B-Instruct" # Alternative: "microsoft/BioGPT-Large"
|
6 |
+
|
7 |
+
# ✅ Load the tokenizer and model
|
8 |
+
try:
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
11 |
+
except Exception as e:
|
12 |
+
print(f"Error loading model: {e}")
|
13 |
+
model = None # Prevents crashing if model doesn't load
|
14 |
+
|
15 |
+
def diagnose(symptoms):
|
16 |
+
if model is None:
|
17 |
+
return "⚠️ Error: AI model failed to load. Try again later."
|
18 |
+
|
19 |
+
prompt = f"I have the following symptoms: {symptoms}. What could it be?"
|
20 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
21 |
+
|
22 |
+
# ✅ Generate AI response
|
23 |
+
output = model.generate(**inputs, max_length=200)
|
24 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
return response
|
27 |
+
|
28 |
+
# ✅ Create a simple web UI
|
29 |
+
interface = gr.Interface(
|
30 |
+
fn=diagnose,
|
31 |
+
inputs="text",
|
32 |
+
outputs="text",
|
33 |
+
title="AI Symptom Checker",
|
34 |
+
description="Enter your symptoms, and the AI will suggest possible conditions."
|
35 |
+
)
|
36 |
+
|
37 |
+
# ✅ Launch the web app
|
38 |
+
if __name__ == "__main__":
|
39 |
+
interface.launch()
|