Spaces:
Runtime error
Runtime error
File size: 4,447 Bytes
644cee9 7df070b cd63339 7df070b cd63339 7df070b 69157ce 7df070b 69157ce 7df070b cd63339 45a05cd cd63339 45a05cd cd63339 45a05cd cd63339 45a05cd cd63339 45a05cd cd63339 45a05cd cd63339 45a05cd cd63339 45a05cd cd63339 7df070b 45a05cd af5339f 7df070b af5339f cd63339 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
# import yolov5
# # load model
# model = yolov5.load('keremberke/yolov5m-license-plate')
# # set model parameters
# model.conf = 0.5 # NMS confidence threshold
# model.iou = 0.25 # NMS IoU threshold
# model.agnostic = False # NMS class-agnostic
# model.multi_label = False # NMS multiple labels per box
# model.max_det = 1000 # maximum number of detections per image
# # set image
# def license_plate_detect(img):
# # perform inference
# results = model(img, size=640)
# # inference with test time augmentation
# results = model(img, augment=True)
# # parse results
# if len(results.pred):
# predictions = results.pred[0]
# boxes = predictions[:, :4] # x1, y1, x2, y2
# scores = predictions[:, 4]
# categories = predictions[:, 5]
# return boxes
# from PIL import Image
# # image = Image.open(img)
# import pytesseract
# def read_license_number(img):
# boxes = license_plate_detect(img)
# if boxes:
# return [pytesseract.image_to_string(
# image.crop(bbox.tolist()))
# for bbox in boxes]
from transformers import CLIPProcessor, CLIPModel
vit_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def zero_shot_classification(image, labels):
inputs = processor(text=labels,
images=image,
return_tensors="pt",
padding=True)
outputs = vit_model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
return logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
# installed_list = []
# # image = Image.open(requests.get(url, stream=True).raw)
# def check_solarplant_installed_by_license(license_number_list):
# if len(installed_list):
# return [license_number in installed_list
# for license_number in license_number_list]
def check_solarplant_installed_by_image(image, output_label=False):
zero_shot_class_labels = ["bus with solar panel grids",
"bus without solar panel grids"]
probs = zero_shot_classification(image, zero_shot_class_labels)
if output_label:
return zero_shot_class_labels[probs.argmax().item()]
return probs.argmax().item() == 0
# def check_solarplant_broken(image):
# zero_shot_class_labels = ["white broken solar panel",
# "normal black solar panel grids"]
# probs = zero_shot_classification(image, zero_shot_class_labels)
# idx = probs.argmax().item()
# return zero_shot_class_labels[idx].split(" ")[1-idx]
from fastsam import FastSAM, FastSAMPrompt
os.system('wget https://huggingface.co./spaces/An-619/FastSAM/resolve/main/weights/FastSAM.pt')
model = FastSAM('./FastSAM.pt')
DEVICE = 'cpu'
def segment_solar_panel(img):
# os.system('python Inference.py --model_path FastSAM.pt --img_path bus.jpg --text_prompt "solar panel grids"')
img = img.convert("RGB")
everything_results = model(img, device=DEVICE, retina_masks=True, imgsz=1024, conf=0.4, iou=0.9,)
prompt_process = FastSAMPrompt(img, everything_results, device=DEVICE)
# everything prompt
ann = prompt_process.everything_prompt()
# bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
ann = prompt_process.box_prompt(bbox=[[200, 200, 300, 300]])
# text prompt
ann = prompt_process.text_prompt(text='solar panel grids')
# point prompt
# points default [[0,0]] [[x1,y1],[x2,y2]]
# point_label default [0] [1,0] 0:background, 1:foreground
ann = prompt_process.point_prompt(points=[[620, 360]], pointlabel=[1])
prompt_process.plot(annotations=ann,output_path='./bus.jpg',)
return Image.Open('./bus.jpg')
import gradio as gr
def greet(img):
if check_solarplant_installed_by_image(img):
seg = segment_solar_panel(img)
return (seg, '嘗試分割太陽能板部分')
# return (seg,
# "車牌: " + '; '.join(lns) + "\n\n" \
# + "類型: "+ check_solarplant_installed_by_image(img, True) + "\n\n" \
# + "狀態:" + check_solarplant_broken(img))
return (img, "沒有太陽能板部分分割")
iface = gr.Interface(fn=greet, inputs="image", outputs=["image", "text"])
iface.launch() |