Spaces:
Runtime error
Runtime error
Update ai.py
Browse files
ai.py
CHANGED
@@ -1,120 +1,144 @@
|
|
1 |
-
import
|
2 |
-
import torch
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
import
|
8 |
-
from
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
self.
|
45 |
-
self.
|
46 |
-
self.
|
47 |
-
self.
|
48 |
-
self.
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
self.
|
53 |
-
self.
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import json
|
7 |
+
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
8 |
+
from sentence_transformers import SentenceTransformer, util
|
9 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
10 |
+
from symspellpy import SymSpell, Verbosity
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
# Ensure Hugging Face cache directory is writable
|
14 |
+
os.environ["TRANSFORMERS_CACHE"] = "/home/user/.cache/huggingface"
|
15 |
+
|
16 |
+
# Set device
|
17 |
+
device = torch.device("cpu")
|
18 |
+
|
19 |
+
# Define DiseaseClassifier Model
|
20 |
+
class DiseaseClassifier(nn.Module):
|
21 |
+
def __init__(self, input_size, num_classes, dropout_rate=0.35665610394511454):
|
22 |
+
super(DiseaseClassifier, self).__init__()
|
23 |
+
self.fc1 = nn.Linear(input_size, 382)
|
24 |
+
self.fc2 = nn.Linear(382, 389)
|
25 |
+
self.fc3 = nn.Linear(389, 433)
|
26 |
+
self.fc4 = nn.Linear(433, num_classes)
|
27 |
+
self.activation = nn.LeakyReLU()
|
28 |
+
self.dropout = nn.Dropout(dropout_rate)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.activation(self.fc1(x))
|
32 |
+
x = self.dropout(x)
|
33 |
+
x = self.activation(self.fc2(x))
|
34 |
+
x = self.dropout(x)
|
35 |
+
x = self.activation(self.fc3(x))
|
36 |
+
x = self.dropout(x)
|
37 |
+
x = self.fc4(x) # Logits
|
38 |
+
return x
|
39 |
+
|
40 |
+
# Define DiseasePredictionModel
|
41 |
+
class DiseasePredictionModel:
|
42 |
+
def __init__(self, ai_model_name="model.pth", data_file="data.csv", symptom_json="symptoms.json", dictionary_file="frequency_dictionary_en_82_765.txt"):
|
43 |
+
# Load dataset
|
44 |
+
self.df = pd.read_csv(data_file)
|
45 |
+
self.symptom_columns = self.load_symptoms(symptom_json)
|
46 |
+
self.label_encoder = LabelEncoder()
|
47 |
+
self.label_encoder.fit(self.df.iloc[:, 0])
|
48 |
+
self.scaler = StandardScaler()
|
49 |
+
self.scaler.fit(self.df.iloc[:, 1:].values)
|
50 |
+
|
51 |
+
self.input_size = len(self.symptom_columns)
|
52 |
+
self.num_classes = len(self.label_encoder.classes_)
|
53 |
+
self.model = self._load_model(ai_model_name)
|
54 |
+
|
55 |
+
self.SYMPTOM_LIST = self.load_symptoms(symptom_json)
|
56 |
+
|
57 |
+
# Load SymSpell dictionary
|
58 |
+
self.sym_spell = SymSpell(max_dictionary_edit_distance=2, prefix_length=7)
|
59 |
+
self.sym_spell.load_dictionary(dictionary_file, term_index=0, count_index=1)
|
60 |
+
|
61 |
+
# Load BioBERT tokenizer and model
|
62 |
+
self.tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1")
|
63 |
+
self.nlp_model = AutoModelForTokenClassification.from_pretrained("dmis-lab/biobert-v1.1")
|
64 |
+
self.ner_pipeline = pipeline("ner", model=self.nlp_model, tokenizer=self.tokenizer, aggregation_strategy="simple")
|
65 |
+
|
66 |
+
# Load Sentence Transformer
|
67 |
+
self.semantic_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
68 |
+
|
69 |
+
def _load_model(self, ai_model_name):
|
70 |
+
model = DiseaseClassifier(self.input_size, self.num_classes).to(device)
|
71 |
+
model.load_state_dict(torch.load(ai_model_name, map_location=device))
|
72 |
+
model.eval()
|
73 |
+
return model
|
74 |
+
|
75 |
+
def predict_disease(self, symptoms):
|
76 |
+
input_vector = np.zeros(len(self.symptom_columns))
|
77 |
+
for symptom in symptoms:
|
78 |
+
if symptom in self.symptom_columns:
|
79 |
+
input_vector[list(self.symptom_columns).index(symptom)] = 1
|
80 |
+
|
81 |
+
input_vector = self.scaler.transform([input_vector])
|
82 |
+
input_tensor = torch.tensor(input_vector, dtype=torch.float32).to(device)
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
outputs = self.model(input_tensor)
|
86 |
+
_, predicted_class = torch.max(outputs, 1)
|
87 |
+
|
88 |
+
predicted_disease = self.label_encoder.inverse_transform([predicted_class.cpu().numpy()[0]])[0]
|
89 |
+
return predicted_disease
|
90 |
+
|
91 |
+
def load_symptoms(self, json_file):
|
92 |
+
with open(json_file, "r", encoding="utf-8") as f:
|
93 |
+
return json.load(f)
|
94 |
+
|
95 |
+
def correct_text(self, text):
|
96 |
+
words = text.split()
|
97 |
+
corrected_words = []
|
98 |
+
|
99 |
+
for word in words:
|
100 |
+
if word.lower() in [symptom.lower() for symptom in self.SYMPTOM_LIST]:
|
101 |
+
corrected_words.append(word)
|
102 |
+
else:
|
103 |
+
suggestions = self.sym_spell.lookup(word, Verbosity.CLOSEST, max_edit_distance=2)
|
104 |
+
if suggestions:
|
105 |
+
corrected_words.append(suggestions[0].term)
|
106 |
+
else:
|
107 |
+
corrected_words.append(word)
|
108 |
+
return ' '.join(corrected_words)
|
109 |
+
|
110 |
+
def extract_symptoms(self, text):
|
111 |
+
ner_results = self.ner_pipeline(text)
|
112 |
+
symptoms = set()
|
113 |
+
for entity in ner_results:
|
114 |
+
if entity["entity_group"] == "DISEASE":
|
115 |
+
symptoms.add(entity["word"].lower())
|
116 |
+
return list(symptoms)
|
117 |
+
|
118 |
+
def match_symptoms(self, extracted_symptoms):
|
119 |
+
matched = {}
|
120 |
+
symptom_embeddings = self.semantic_model.encode(self.SYMPTOM_LIST, convert_to_tensor=True)
|
121 |
+
|
122 |
+
for symptom in extracted_symptoms:
|
123 |
+
symptom_embedding = self.semantic_model.encode(symptom, convert_to_tensor=True)
|
124 |
+
similarities = util.pytorch_cos_sim(symptom_embedding, symptom_embeddings)[0]
|
125 |
+
most_similar_idx = similarities.argmax()
|
126 |
+
best_match = self.SYMPTOM_LIST[most_similar_idx]
|
127 |
+
matched[symptom] = best_match
|
128 |
+
|
129 |
+
return matched.values()
|
130 |
+
|
131 |
+
# Initialize Model
|
132 |
+
model = DiseasePredictionModel()
|
133 |
+
|
134 |
+
# Define Prediction Function
|
135 |
+
def predict(symptoms):
|
136 |
+
corrected = model.correct_text(symptoms)
|
137 |
+
extracted = model.extract_symptoms(corrected)
|
138 |
+
matched = model.match_symptoms(extracted)
|
139 |
+
prediction = model.predict_disease(matched)
|
140 |
+
return prediction
|
141 |
+
|
142 |
+
# Define Gradio Interface
|
143 |
+
iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="Disease Prediction AI")
|
144 |
+
iface.launch()
|