File size: 15,012 Bytes
395201c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
from enum import Enum
import requests, traceback
import json
from jinja2 import Template, exceptions, Environment, meta
from typing import Optional
def default_pt(messages):
return " ".join(message["content"] for message in messages)
# alpaca prompt template - for models like mythomax, etc.
def alpaca_pt(messages):
prompt = custom_prompt(
role_dict={
"system": {
"pre_message": "### Instruction:\n",
"post_message": "\n\n",
},
"user": {
"pre_message": "### Instruction:\n",
"post_message": "\n\n",
},
"assistant": {
"pre_message": "### Response:\n",
"post_message": "\n\n"
}
},
bos_token="<s>",
eos_token="</s>",
messages=messages
)
return prompt
# Llama2 prompt template
def llama_2_chat_pt(messages):
prompt = custom_prompt(
role_dict={
"system": {
"pre_message": "[INST] <<SYS>>\n",
"post_message": "\n<</SYS>>\n [/INST]\n"
},
"user": { # follow this format https://github.com/facebookresearch/llama/blob/77062717054710e352a99add63d160274ce670c6/llama/generation.py#L348
"pre_message": "[INST] ",
"post_message": " [/INST]\n"
},
"assistant": {
"post_message": "\n" # follows this - https://replicate.com/blog/how-to-prompt-llama
}
},
messages=messages,
bos_token="<s>",
eos_token="</s>"
)
return prompt
def ollama_pt(model, messages): # https://github.com/jmorganca/ollama/blob/af4cf55884ac54b9e637cd71dadfe9b7a5685877/docs/modelfile.md#template
if "instruct" in model:
prompt = custom_prompt(
role_dict={
"system": {
"pre_message": "### System:\n",
"post_message": "\n"
},
"user": {
"pre_message": "### User:\n",
"post_message": "\n",
},
"assistant": {
"pre_message": "### Response:\n",
"post_message": "\n",
}
},
final_prompt_value="### Response:",
messages=messages
)
else:
prompt = "".join(m["content"] for m in messages)
return prompt
def mistral_instruct_pt(messages):
prompt = custom_prompt(
initial_prompt_value="<s>",
role_dict={
"system": {
"pre_message": "[INST]",
"post_message": "[/INST]"
},
"user": {
"pre_message": "[INST]",
"post_message": "[/INST]"
},
"assistant": {
"pre_message": "[INST]",
"post_message": "[/INST]"
}
},
final_prompt_value="</s>",
messages=messages
)
return prompt
# Falcon prompt template - from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py#L110
def falcon_instruct_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += message["content"]
else:
prompt += message['role']+":"+ message["content"].replace("\r\n", "\n").replace("\n\n", "\n")
prompt += "\n\n"
return prompt
def falcon_chat_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += "System: " + message["content"]
elif message["role"] == "assistant":
prompt += "Falcon: " + message["content"]
elif message["role"] == "user":
prompt += "User: " + message["content"]
return prompt
# MPT prompt template - from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py#L110
def mpt_chat_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += "<|im_start|>system" + message["content"] + "<|im_end|>" + "\n"
elif message["role"] == "assistant":
prompt += "<|im_start|>assistant" + message["content"] + "<|im_end|>" + "\n"
elif message["role"] == "user":
prompt += "<|im_start|>user" + message["content"] + "<|im_end|>" + "\n"
return prompt
# WizardCoder prompt template - https://huggingface.co./WizardLM/WizardCoder-Python-34B-V1.0#prompt-format
def wizardcoder_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += message["content"] + "\n\n"
elif message["role"] == "user": # map to 'Instruction'
prompt += "### Instruction:\n" + message["content"] + "\n\n"
elif message["role"] == "assistant": # map to 'Response'
prompt += "### Response:\n" + message["content"] + "\n\n"
return prompt
# Phind-CodeLlama prompt template - https://huggingface.co./Phind/Phind-CodeLlama-34B-v2#how-to-prompt-the-model
def phind_codellama_pt(messages):
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += "### System Prompt\n" + message["content"] + "\n\n"
elif message["role"] == "user":
prompt += "### User Message\n" + message["content"] + "\n\n"
elif message["role"] == "assistant":
prompt += "### Assistant\n" + message["content"] + "\n\n"
return prompt
def hf_chat_template(model: str, messages: list):
## get the tokenizer config from huggingface
def _get_tokenizer_config(hf_model_name):
url = f"https://huggingface.co./{hf_model_name}/raw/main/tokenizer_config.json"
# Make a GET request to fetch the JSON data
response = requests.get(url)
if response.status_code == 200:
# Parse the JSON data
tokenizer_config = json.loads(response.content)
return {"status": "success", "tokenizer": tokenizer_config}
else:
return {"status": "failure"}
tokenizer_config = _get_tokenizer_config(model)
if tokenizer_config["status"] == "failure" or "chat_template" not in tokenizer_config["tokenizer"]:
raise Exception("No chat template found")
## read the bos token, eos token and chat template from the json
tokenizer_config = tokenizer_config["tokenizer"]
bos_token = tokenizer_config["bos_token"]
eos_token = tokenizer_config["eos_token"]
chat_template = tokenizer_config["chat_template"]
def raise_exception(message):
raise Exception(f"Error message - {message}")
# Create a template object from the template text
env = Environment()
env.globals['raise_exception'] = raise_exception
template = env.from_string(chat_template)
def _is_system_in_template():
try:
# Try rendering the template with a system message
response = template.render(messages=[{"role": "system", "content": "test"}], eos_token= "<eos>", bos_token= "<bos>")
return True
# This will be raised if Jinja attempts to render the system message and it can't
except:
return False
try:
# Render the template with the provided values
if _is_system_in_template():
rendered_text = template.render(bos_token=bos_token, eos_token=eos_token, messages=messages)
else:
# treat a system message as a user message, if system not in template
try:
reformatted_messages = []
for message in messages:
if message["role"] == "system":
reformatted_messages.append({"role": "user", "content": message["content"]})
else:
reformatted_messages.append(message)
rendered_text = template.render(bos_token=bos_token, eos_token=eos_token, messages=reformatted_messages)
except Exception as e:
if "Conversation roles must alternate user/assistant" in str(e):
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
new_messages = []
for i in range(len(reformatted_messages)-1):
new_messages.append(reformatted_messages[i])
if reformatted_messages[i]["role"] == reformatted_messages[i+1]["role"]:
if reformatted_messages[i]["role"] == "user":
new_messages.append({"role": "assistant", "content": ""})
else:
new_messages.append({"role": "user", "content": ""})
new_messages.append(reformatted_messages[-1])
rendered_text = template.render(bos_token=bos_token, eos_token=eos_token, messages=new_messages)
return rendered_text
except:
raise Exception("Error rendering template")
# Anthropic template
def claude_2_1_pt(messages: list): # format - https://docs.anthropic.com/claude/docs/how-to-use-system-prompts
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman: "
AI_PROMPT = "\n\nAssistant: "
prompt = ""
for idx, message in enumerate(messages): # needs to start with `\n\nHuman: ` and end with `\n\nAssistant: `
if message["role"] == "user":
prompt += (
f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
)
elif message["role"] == "system":
prompt += (
f"{message['content']}"
)
else:
prompt += (
f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
)
if idx == 0 and message["role"] == "assistant": # ensure the prompt always starts with `\n\nHuman: `
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}" + prompt
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
return prompt
def anthropic_pt(messages: list): # format - https://docs.anthropic.com/claude/reference/complete_post
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman: "
AI_PROMPT = "\n\nAssistant: "
prompt = ""
for idx, message in enumerate(messages): # needs to start with `\n\nHuman: ` and end with `\n\nAssistant: `
if message["role"] == "user":
prompt += (
f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
)
elif message["role"] == "system":
prompt += (
f"{AnthropicConstants.HUMAN_PROMPT.value}<admin>{message['content']}</admin>"
)
else:
prompt += (
f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
)
if idx == 0 and message["role"] == "assistant": # ensure the prompt always starts with `\n\nHuman: `
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}" + prompt
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
return prompt
# Function call template
def function_call_prompt(messages: list, functions: list):
function_prompt = "The following functions are available to you:"
for function in functions:
function_prompt += f"""\n{function}\n"""
function_added_to_prompt = False
for message in messages:
if "system" in message["role"]:
message['content'] += f"""{function_prompt}"""
function_added_to_prompt = True
if function_added_to_prompt == False:
messages.append({'role': 'system', 'content': f"""{function_prompt}"""})
return messages
# Custom prompt template
def custom_prompt(role_dict: dict, messages: list, initial_prompt_value: str="", final_prompt_value: str="", bos_token: str="", eos_token: str=""):
prompt = bos_token + initial_prompt_value
bos_open = True
## a bos token is at the start of a system / human message
## an eos token is at the end of the assistant response to the message
for message in messages:
role = message["role"]
if role in ["system", "human"] and not bos_open:
prompt += bos_token
bos_open = True
pre_message_str = role_dict[role]["pre_message"] if role in role_dict and "pre_message" in role_dict[role] else ""
post_message_str = role_dict[role]["post_message"] if role in role_dict and "post_message" in role_dict[role] else ""
prompt += pre_message_str + message["content"] + post_message_str
if role == "assistant":
prompt += eos_token
bos_open = False
prompt += final_prompt_value
return prompt
def prompt_factory(model: str, messages: list, custom_llm_provider: Optional[str]=None):
original_model_name = model
model = model.lower()
if custom_llm_provider == "ollama":
return ollama_pt(model=model, messages=messages)
elif custom_llm_provider == "anthropic":
if "claude-2.1" in model:
return claude_2_1_pt(messages=messages)
else:
return anthropic_pt(messages=messages)
try:
if "meta-llama/llama-2" in model and "chat" in model:
return llama_2_chat_pt(messages=messages)
elif "tiiuae/falcon" in model: # Note: for the instruct models, it's best to use a User: .., Assistant:.. approach in your prompt template.
if model == "tiiuae/falcon-180B-chat":
return falcon_chat_pt(messages=messages)
elif "instruct" in model:
return falcon_instruct_pt(messages=messages)
elif "mosaicml/mpt" in model:
if "chat" in model:
return mpt_chat_pt(messages=messages)
elif "codellama/codellama" in model:
if "instruct" in model:
return llama_2_chat_pt(messages=messages) # https://huggingface.co./blog/codellama#conversational-instructions
elif "wizardlm/wizardcoder" in model:
return wizardcoder_pt(messages=messages)
elif "phind/phind-codellama" in model:
return phind_codellama_pt(messages=messages)
elif "togethercomputer/llama-2" in model and ("instruct" in model or "chat" in model):
return llama_2_chat_pt(messages=messages)
elif model in ["gryphe/mythomax-l2-13b", "gryphe/mythomix-l2-13b", "gryphe/mythologic-l2-13b"]:
return alpaca_pt(messages=messages)
else:
return hf_chat_template(original_model_name, messages)
except:
return default_pt(messages=messages) # default that covers Bloom, T-5, any non-chat tuned model (e.g. base Llama2)
|