Nolan Zandi
commited on
Commit
·
f5b1bff
1
Parent(s):
1647e02
visualization updates and refactor for future release
Browse files- app.py +62 -97
- assets/styles.css +168 -0
- data_file.py +126 -0
- data_sources/upload_file.py +1 -1
- functions/chat_functions.py +5 -6
- tools.py → tools/chart_tools.py +13 -93
- tools/stats_tools.py +44 -0
- tools/tools.py +79 -0
app.py
CHANGED
@@ -1,18 +1,13 @@
|
|
1 |
-
from data_sources import process_data_upload
|
2 |
-
from functions import example_question_generator, chatbot_with_fc
|
3 |
from utils import TEMP_DIR, message_dict
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
-
import ast
|
7 |
import os
|
8 |
from getpass import getpass
|
9 |
from dotenv import load_dotenv
|
10 |
|
11 |
load_dotenv()
|
12 |
|
13 |
-
if "OPENAI_API_KEY" not in os.environ:
|
14 |
-
os.environ["OPENAI_API_KEY"] = getpass("Enter OpenAI API key:")
|
15 |
-
|
16 |
def delete_db(req: gr.Request):
|
17 |
import shutil
|
18 |
dir_path = TEMP_DIR / str(req.session_hash)
|
@@ -20,102 +15,72 @@ def delete_db(req: gr.Request):
|
|
20 |
shutil.rmtree(dir_path)
|
21 |
message_dict[req.session_hash] = None
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
def example_display(input):
|
27 |
-
if input == None:
|
28 |
-
display = True
|
29 |
-
else:
|
30 |
-
display = False
|
31 |
-
return [gr.update(visible=display),gr.update(visible=display)]
|
32 |
|
33 |
css= ".file_marker .large{min-height:50px !important;} .example_btn{max-width:300px;} .padding{padding:0;}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
with gr.Blocks(css=css, delete_cache=(3600,3600)) as demo:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
@gr.render(inputs=file_output)
|
60 |
-
def data_options(filename, request: gr.Request):
|
61 |
-
print(filename)
|
62 |
-
message_dict[request.session_hash] = None
|
63 |
-
if filename:
|
64 |
-
process_message = process_upload(filename, request.session_hash)
|
65 |
-
gr.HTML(value=process_message[1], padding=False)
|
66 |
-
if process_message[0] == "success":
|
67 |
-
if "bank_marketing_campaign" in filename:
|
68 |
-
example_questions = [
|
69 |
-
["Describe the dataset"],
|
70 |
-
["What levels of education have the highest and lowest average balance?"],
|
71 |
-
["What job is most and least common for a yes response from the individuals, not counting 'unknown'?"],
|
72 |
-
["Can you generate a bar chart of education vs. average balance?"],
|
73 |
-
["Can you generate a table of levels of education versus average balance, percent married, percent with a loan, and percent in default?"],
|
74 |
-
["Can we predict the relationship between the number of contacts performed before this campaign and the average balance?"],
|
75 |
-
["Can you plot the number of contacts performed before this campaign versus the duration and use balance as the size in a bubble chart?"]
|
76 |
-
]
|
77 |
-
elif "online_retail_data" in filename:
|
78 |
-
example_questions = [
|
79 |
-
["Describe the dataset"],
|
80 |
-
["What month had the highest revenue?"],
|
81 |
-
["Is revenue higher in the morning or afternoon?"],
|
82 |
-
["Can you generate a line graph of revenue per month?"],
|
83 |
-
["Can you generate a table of revenue per month?"],
|
84 |
-
["Can we predict how time of day affects transaction value in this data set?"],
|
85 |
-
["Can you plot revenue per month with size being the number of units sold that month in a bubble chart?"]
|
86 |
-
]
|
87 |
-
else:
|
88 |
-
try:
|
89 |
-
generated_examples = ast.literal_eval(example_question_generator(request.session_hash))
|
90 |
-
example_questions = [
|
91 |
-
["Describe the dataset"]
|
92 |
-
]
|
93 |
-
for example in generated_examples:
|
94 |
-
example_questions.append([example])
|
95 |
-
except:
|
96 |
-
example_questions = [
|
97 |
-
["Describe the dataset"],
|
98 |
-
["List the columns in the dataset"],
|
99 |
-
["What could this data be used for?"],
|
100 |
-
]
|
101 |
-
parameters = gr.Textbox(visible=False, value=request.session_hash)
|
102 |
-
bot = gr.Chatbot(type='messages', label="CSV Chat Window", render_markdown=True, sanitize_html=False, show_label=True, render=False, visible=True, elem_classes="chatbot")
|
103 |
-
chat = gr.ChatInterface(
|
104 |
-
fn=chatbot_with_fc,
|
105 |
-
type='messages',
|
106 |
-
chatbot=bot,
|
107 |
-
title="Chat with your data file",
|
108 |
-
concurrency_limit=None,
|
109 |
-
examples=example_questions,
|
110 |
-
additional_inputs=parameters
|
111 |
-
)
|
112 |
-
|
113 |
-
def process_upload(upload_value, session_hash):
|
114 |
-
if upload_value:
|
115 |
-
process_message = process_data_upload(upload_value, session_hash)
|
116 |
-
return process_message
|
117 |
-
|
118 |
demo.unload(delete_db)
|
119 |
|
120 |
## Uncomment the line below to launch the chat app with UI
|
121 |
-
demo.launch(debug=True, allowed_paths=["temp/"])
|
|
|
|
|
|
|
1 |
from utils import TEMP_DIR, message_dict
|
2 |
import gradio as gr
|
3 |
+
import data_file, sql_db
|
4 |
|
|
|
5 |
import os
|
6 |
from getpass import getpass
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
load_dotenv()
|
10 |
|
|
|
|
|
|
|
11 |
def delete_db(req: gr.Request):
|
12 |
import shutil
|
13 |
dir_path = TEMP_DIR / str(req.session_hash)
|
|
|
15 |
shutil.rmtree(dir_path)
|
16 |
message_dict[req.session_hash] = None
|
17 |
|
18 |
+
if "OPENAI_API_KEY" not in os.environ:
|
19 |
+
os.environ["OPENAI_API_KEY"] = getpass("Enter OpenAI API key:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
css= ".file_marker .large{min-height:50px !important;} .example_btn{max-width:300px;} .padding{padding:0;}"
|
22 |
+
head = """<meta charset="UTF-8">
|
23 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
24 |
+
<title>Virtual Data Analyst</title>
|
25 |
+
<!-- Tailwind CSS -->
|
26 |
+
<script src="https://cdn.tailwindcss.com"></script>
|
27 |
+
<!-- Google Fonts -->
|
28 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap" rel="stylesheet">
|
29 |
+
<!-- Font Awesome -->
|
30 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
|
31 |
+
<!-- Custom Styles -->
|
32 |
+
<link rel="stylesheet" href="/gradio_api/file=assets/styles.css">
|
33 |
+
"""
|
34 |
+
|
35 |
+
theme = gr.themes.Base(primary_hue="sky", secondary_hue="slate",font=[gr.themes.GoogleFont("Inter"), "Inter", "sans-serif"]).set(
|
36 |
+
button_primary_background_fill="#3B82F6",
|
37 |
+
button_secondary_background_fill="#6B7280",
|
38 |
+
)
|
39 |
+
|
40 |
+
from pathlib import Path
|
41 |
+
gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"])
|
42 |
|
43 |
+
with gr.Blocks(theme=theme, css=css, head=head, delete_cache=(3600,3600)) as demo:
|
44 |
+
header = gr.HTML("""
|
45 |
+
<!-- Header -->
|
46 |
+
<header class="max-w-4xl mx-auto mb-12 text-center">
|
47 |
+
<h1 class="text-4xl font-bold text-gray-900 mb-4">Virtual Data Analyst</h1>
|
48 |
+
<p class="text-lg text-gray-600 mb-6">
|
49 |
+
A powerful tool for data analysis, visualizations, and insights
|
50 |
+
</p>
|
51 |
+
</header>
|
52 |
+
<!-- Main Content -->
|
53 |
+
<main class="max-w-4xl mx-auto">
|
54 |
+
<!-- Features Preview -->
|
55 |
+
<div class="mt-12 grid md:grid-cols-3 gap-6" style="margin-bottom:3px !important;">
|
56 |
+
<div class="feature-card bg-white p-6 rounded-lg shadow-md">
|
57 |
+
<i class="feature-icon fas fa-chart-line text-primary text-2xl mb-4"></i>
|
58 |
+
<h3 class="font-semibold text-gray-800 mb-2">Advanced Analytics</h3>
|
59 |
+
<p class="text-gray-600 text-sm">Run SQL queries, perform regressions, and analyze results with ease</p>
|
60 |
+
</div>
|
61 |
+
<div class="feature-card bg-white p-6 rounded-lg shadow-md">
|
62 |
+
<i class="feature-icon fas fa-chart-pie text-primary text-2xl mb-4"></i>
|
63 |
+
<h3 class="font-semibold text-gray-800 mb-2">Rich Visualizations</h3>
|
64 |
+
<p class="text-gray-600 text-sm">Create scatter plots, line charts, pie charts, and more</p>
|
65 |
+
</div>
|
66 |
+
<div class="feature-card bg-white p-6 rounded-lg shadow-md">
|
67 |
+
<i class="feature-icon fas fa-magic text-primary text-2xl mb-4"></i>
|
68 |
+
<h3 class="font-semibold text-gray-800 mb-2">Automated Insights</h3>
|
69 |
+
<p class="text-gray-600 text-sm">Get instant insights and recommendations for your data</p>
|
70 |
+
</div>
|
71 |
+
</div>
|
72 |
+
</main>""")
|
73 |
+
#with gr.Tab("Data File"):
|
74 |
+
data_file.demo.render()
|
75 |
+
#with gr.Tab("SQL Database"):
|
76 |
+
# sql_db.demo.render()
|
77 |
|
78 |
+
footer = gr.HTML("""<!-- Footer -->
|
79 |
+
<footer class="max-w-4xl mx-auto mt-12 text-center text-gray-500 text-sm">
|
80 |
+
<p>This application is under active development. For bugs or feedback, please open a discussion in the community tab.</p>
|
81 |
+
</footer>""")
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
demo.unload(delete_db)
|
84 |
|
85 |
## Uncomment the line below to launch the chat app with UI
|
86 |
+
demo.launch(debug=True, allowed_paths=["temp/","assets/"])
|
assets/styles.css
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Loading Animation */
|
2 |
+
.loading-spinner {
|
3 |
+
display: none;
|
4 |
+
width: 50px;
|
5 |
+
height: 50px;
|
6 |
+
border: 5px solid #f3f3f3;
|
7 |
+
border-top: 5px solid #3B82F6;
|
8 |
+
border-radius: 50%;
|
9 |
+
animation: spin 1s linear infinite;
|
10 |
+
margin: 0 auto;
|
11 |
+
}
|
12 |
+
|
13 |
+
@keyframes spin {
|
14 |
+
0% { transform: rotate(0deg); }
|
15 |
+
100% { transform: rotate(360deg); }
|
16 |
+
}
|
17 |
+
|
18 |
+
/* File Upload Progress */
|
19 |
+
.progress-bar {
|
20 |
+
width: 100%;
|
21 |
+
height: 6px;
|
22 |
+
background-color: #e5e7eb;
|
23 |
+
border-radius: 3px;
|
24 |
+
overflow: hidden;
|
25 |
+
display: none;
|
26 |
+
margin: 1rem auto;
|
27 |
+
max-width: 300px;
|
28 |
+
}
|
29 |
+
|
30 |
+
.progress-bar-fill {
|
31 |
+
height: 100%;
|
32 |
+
background-color: #3B82F6;
|
33 |
+
width: 0%;
|
34 |
+
transition: width 0.3s ease;
|
35 |
+
}
|
36 |
+
|
37 |
+
/* Tooltip */
|
38 |
+
.tooltip {
|
39 |
+
position: relative;
|
40 |
+
display: inline-block;
|
41 |
+
}
|
42 |
+
|
43 |
+
.tooltip .tooltip-text {
|
44 |
+
visibility: hidden;
|
45 |
+
background-color: #1f2937;
|
46 |
+
color: white;
|
47 |
+
text-align: center;
|
48 |
+
padding: 8px 12px;
|
49 |
+
border-radius: 6px;
|
50 |
+
position: absolute;
|
51 |
+
z-index: 1;
|
52 |
+
bottom: 125%;
|
53 |
+
left: 50%;
|
54 |
+
transform: translateX(-50%);
|
55 |
+
opacity: 0;
|
56 |
+
transition: opacity 0.3s;
|
57 |
+
font-size: 0.875rem;
|
58 |
+
white-space: nowrap;
|
59 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
60 |
+
}
|
61 |
+
|
62 |
+
.tooltip:hover .tooltip-text {
|
63 |
+
visibility: visible;
|
64 |
+
opacity: 1;
|
65 |
+
}
|
66 |
+
|
67 |
+
/* File Type Icons */
|
68 |
+
.file-type-icon {
|
69 |
+
font-size: 1.5rem;
|
70 |
+
margin-right: 0.5rem;
|
71 |
+
color: #3B82F6;
|
72 |
+
}
|
73 |
+
|
74 |
+
/* Success Animation */
|
75 |
+
@keyframes checkmark {
|
76 |
+
0% { transform: scale(0); opacity: 0; }
|
77 |
+
50% { transform: scale(1.2); opacity: 0.8; }
|
78 |
+
100% { transform: scale(1); opacity: 1; }
|
79 |
+
}
|
80 |
+
|
81 |
+
.success-checkmark {
|
82 |
+
display: none;
|
83 |
+
color: #10B981;
|
84 |
+
animation: checkmark 0.5s ease-in-out forwards;
|
85 |
+
}
|
86 |
+
|
87 |
+
/* Sample Data Cards */
|
88 |
+
.sample-btn {
|
89 |
+
transition: all 0.3s ease;
|
90 |
+
position: relative;
|
91 |
+
overflow: hidden;
|
92 |
+
}
|
93 |
+
|
94 |
+
.sample-btn::after {
|
95 |
+
content: '';
|
96 |
+
position: absolute;
|
97 |
+
top: 0;
|
98 |
+
left: 0;
|
99 |
+
width: 100%;
|
100 |
+
height: 100%;
|
101 |
+
background: linear-gradient(rgba(255,255,255,0.1), rgba(255,255,255,0));
|
102 |
+
transform: translateY(-100%);
|
103 |
+
transition: transform 0.3s ease;
|
104 |
+
}
|
105 |
+
|
106 |
+
.sample-btn:hover::after {
|
107 |
+
transform: translateY(0);
|
108 |
+
}
|
109 |
+
|
110 |
+
.sample-btn:hover {
|
111 |
+
transform: translateY(-2px);
|
112 |
+
box-shadow: 0 8px 15px rgba(0,0,0,0.1);
|
113 |
+
}
|
114 |
+
|
115 |
+
/* Drop Zone Enhancements */
|
116 |
+
.drop-zone {
|
117 |
+
transition: all 0.3s ease;
|
118 |
+
position: relative;
|
119 |
+
overflow: hidden;
|
120 |
+
}
|
121 |
+
|
122 |
+
.drop-zone::before {
|
123 |
+
content: '';
|
124 |
+
position: absolute;
|
125 |
+
top: 0;
|
126 |
+
left: 0;
|
127 |
+
right: 0;
|
128 |
+
bottom: 0;
|
129 |
+
border-radius: 8px;
|
130 |
+
border: 2px dashed #3B82F6;
|
131 |
+
opacity: 0;
|
132 |
+
transition: opacity 0.3s ease;
|
133 |
+
}
|
134 |
+
|
135 |
+
.drop-zone:hover::before {
|
136 |
+
opacity: 1;
|
137 |
+
}
|
138 |
+
|
139 |
+
/* File Info Card */
|
140 |
+
#fileInfo {
|
141 |
+
background: linear-gradient(to right, #f8fafc, #f1f5f9);
|
142 |
+
border: 1px solid #e2e8f0;
|
143 |
+
transition: all 0.3s ease;
|
144 |
+
}
|
145 |
+
|
146 |
+
#fileInfo:hover {
|
147 |
+
transform: translateY(-2px);
|
148 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
149 |
+
}
|
150 |
+
|
151 |
+
/* Features Section */
|
152 |
+
.feature-card {
|
153 |
+
transition: all 0.3s ease;
|
154 |
+
}
|
155 |
+
|
156 |
+
.feature-card:hover {
|
157 |
+
transform: translateY(-2px);
|
158 |
+
box-shadow: 0 8px 15px rgba(0,0,0,0.1);
|
159 |
+
}
|
160 |
+
|
161 |
+
.feature-icon {
|
162 |
+
transition: all 0.3s ease;
|
163 |
+
}
|
164 |
+
|
165 |
+
.feature-card:hover .feature-icon {
|
166 |
+
transform: scale(1.1);
|
167 |
+
color: #2563eb;
|
168 |
+
}
|
data_file.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from functions import example_question_generator, chatbot_with_fc
|
3 |
+
from data_sources import process_data_upload
|
4 |
+
from utils import message_dict
|
5 |
+
import ast
|
6 |
+
|
7 |
+
def run_example(input):
|
8 |
+
return input
|
9 |
+
|
10 |
+
def example_display(input):
|
11 |
+
if input == None:
|
12 |
+
display = True
|
13 |
+
else:
|
14 |
+
display = False
|
15 |
+
return [gr.update(visible=display),gr.update(visible=display),gr.update(visible=display)]
|
16 |
+
|
17 |
+
with gr.Blocks() as demo:
|
18 |
+
description = gr.HTML("""
|
19 |
+
<!-- Header -->
|
20 |
+
<div class="max-w-4xl mx-auto mb-12 text-center">
|
21 |
+
<div class="bg-blue-50 border border-blue-200 rounded-lg max-w-2xl mx-auto">
|
22 |
+
<h2 class="font-semibold text-blue-800 ">
|
23 |
+
<i class="fas fa-info-circle mr-2"></i>Supported Files
|
24 |
+
</h2>
|
25 |
+
<div class="flex flex-wrap justify-center gap-3 pb-4 text-blue-700">
|
26 |
+
<span class="tooltip">
|
27 |
+
<i class="fas fa-file-csv mr-1"></i>CSV
|
28 |
+
<span class="tooltip-text">Comma-separated values</span>
|
29 |
+
</span>
|
30 |
+
<span class="tooltip">
|
31 |
+
<i class="fas fa-file-alt mr-1"></i>TSV
|
32 |
+
<span class="tooltip-text">Tab-separated values</span>
|
33 |
+
</span>
|
34 |
+
<span class="tooltip">
|
35 |
+
<i class="fas fa-file-alt mr-1"></i>TXT
|
36 |
+
<span class="tooltip-text">Text files</span>
|
37 |
+
</span>
|
38 |
+
<span class="tooltip">
|
39 |
+
<i class="fas fa-file-excel mr-1"></i>XLS/XLSX
|
40 |
+
<span class="tooltip-text">Excel spreadsheets</span>
|
41 |
+
</span>
|
42 |
+
<span class="tooltip">
|
43 |
+
<i class="fas fa-file-code mr-1"></i>XML
|
44 |
+
<span class="tooltip-text">XML documents</span>
|
45 |
+
</span>
|
46 |
+
<span class="tooltip">
|
47 |
+
<i class="fas fa-file-code mr-1"></i>JSON
|
48 |
+
<span class="tooltip-text">JSON data files</span>
|
49 |
+
</span>
|
50 |
+
</div>
|
51 |
+
</div>
|
52 |
+
</div>
|
53 |
+
""")
|
54 |
+
example_file_1 = gr.File(visible=False, value="samples/bank_marketing_campaign.csv")
|
55 |
+
example_file_2 = gr.File(visible=False, value="samples/online_retail_data.csv")
|
56 |
+
with gr.Row():
|
57 |
+
example_btn_1 = gr.Button(value="Try Me: bank_marketing_campaign.csv", elem_classes="example_btn sample-btn bg-gradient-to-r from-purple-500 to-indigo-600 text-white p-6 rounded-lg text-left hover:shadow-lg", size="md", variant="primary")
|
58 |
+
example_btn_2 = gr.Button(value="Try Me: online_retail_data.csv", elem_classes="example_btn sample-btn bg-gradient-to-r from-purple-500 to-indigo-600 text-white p-6 rounded-lg text-left hover:shadow-lg", size="md", variant="primary")
|
59 |
+
|
60 |
+
file_output = gr.File(label="Data File (CSV, TSV, TXT, XLS, XLSX, XML, JSON)", show_label=True, elem_classes="file_marker drop-zone border-2 border-dashed border-gray-300 rounded-lg hover:border-primary cursor-pointer bg-gray-50 hover:bg-blue-50 transition-colors duration-300", file_types=['.csv','.xlsx','.txt','.json','.ndjson','.xml','.xls','.tsv'])
|
61 |
+
example_btn_1.click(fn=run_example, inputs=example_file_1, outputs=file_output)
|
62 |
+
example_btn_2.click(fn=run_example, inputs=example_file_2, outputs=file_output)
|
63 |
+
file_output.change(fn=example_display, inputs=file_output, outputs=[example_btn_1, example_btn_2, description])
|
64 |
+
|
65 |
+
@gr.render(inputs=file_output)
|
66 |
+
def data_options(filename, request: gr.Request):
|
67 |
+
print(filename)
|
68 |
+
message_dict[request.session_hash] = None
|
69 |
+
if filename:
|
70 |
+
process_message = process_upload(filename, request.session_hash)
|
71 |
+
gr.HTML(value=process_message[1], padding=False)
|
72 |
+
if process_message[0] == "success":
|
73 |
+
if "bank_marketing_campaign" in filename:
|
74 |
+
example_questions = [
|
75 |
+
["Describe the dataset"],
|
76 |
+
["What levels of education have the highest and lowest average balance?"],
|
77 |
+
["What job is most and least common for a yes response from the individuals, not counting 'unknown'?"],
|
78 |
+
["Can you generate a bar chart of education vs. average balance?"],
|
79 |
+
["Can you generate a table of levels of education versus average balance, percent married, percent with a loan, and percent in default?"],
|
80 |
+
["Can we predict the relationship between the number of contacts performed before this campaign and the average balance?"],
|
81 |
+
["Can you plot the number of contacts performed before this campaign versus the duration and use balance as the size in a bubble chart?"]
|
82 |
+
]
|
83 |
+
elif "online_retail_data" in filename:
|
84 |
+
example_questions = [
|
85 |
+
["Describe the dataset"],
|
86 |
+
["What month had the highest revenue?"],
|
87 |
+
["Is revenue higher in the morning or afternoon?"],
|
88 |
+
["Can you generate a line graph of revenue per month?"],
|
89 |
+
["Can you generate a table of revenue per month?"],
|
90 |
+
["Can we predict how time of day affects transaction value in this data set?"],
|
91 |
+
["Can you plot revenue per month with size being the number of units sold that month in a bubble chart?"]
|
92 |
+
]
|
93 |
+
else:
|
94 |
+
try:
|
95 |
+
generated_examples = ast.literal_eval(example_question_generator(request.session_hash))
|
96 |
+
example_questions = [
|
97 |
+
["Describe the dataset"]
|
98 |
+
]
|
99 |
+
for example in generated_examples:
|
100 |
+
example_questions.append([example])
|
101 |
+
except:
|
102 |
+
example_questions = [
|
103 |
+
["Describe the dataset"],
|
104 |
+
["List the columns in the dataset"],
|
105 |
+
["What could this data be used for?"],
|
106 |
+
]
|
107 |
+
parameters = gr.Textbox(visible=False, value=request.session_hash)
|
108 |
+
bot = gr.Chatbot(type='messages', label="CSV Chat Window", render_markdown=True, sanitize_html=False, show_label=True, render=False, visible=True, elem_classes="chatbot")
|
109 |
+
chat = gr.ChatInterface(
|
110 |
+
fn=chatbot_with_fc,
|
111 |
+
type='messages',
|
112 |
+
chatbot=bot,
|
113 |
+
title="Chat with your data file",
|
114 |
+
concurrency_limit=None,
|
115 |
+
examples=example_questions,
|
116 |
+
additional_inputs=parameters
|
117 |
+
)
|
118 |
+
|
119 |
+
def process_upload(upload_value, session_hash):
|
120 |
+
if upload_value:
|
121 |
+
process_message = process_data_upload(upload_value, session_hash)
|
122 |
+
return process_message
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
demo.launch()
|
data_sources/upload_file.py
CHANGED
@@ -68,7 +68,7 @@ def process_data_upload(data_file, session_hash):
|
|
68 |
pattern = 'year|month|date|day|time'
|
69 |
if re.search(pattern, column.lower()):
|
70 |
try:
|
71 |
-
df[column] = pd.to_datetime(df[column]
|
72 |
except:
|
73 |
pass
|
74 |
if df[column].dtype == 'object' and isinstance(df[column].iloc[0], list):
|
|
|
68 |
pattern = 'year|month|date|day|time'
|
69 |
if re.search(pattern, column.lower()):
|
70 |
try:
|
71 |
+
df[column] = pd.to_datetime(df[column])
|
72 |
except:
|
73 |
pass
|
74 |
if df[column].dtype == 'object' and isinstance(df[column].iloc[0], list):
|
functions/chat_functions.py
CHANGED
@@ -38,7 +38,7 @@ def example_question_generator(session_hash):
|
|
38 |
def chatbot_with_fc(message, history, session_hash):
|
39 |
from functions import sqlite_query_func, table_generation_func, regression_func, scatter_chart_generation_func, \
|
40 |
line_chart_generation_func,bar_chart_generation_func,pie_chart_generation_func,histogram_generation_func
|
41 |
-
import tools
|
42 |
|
43 |
available_functions = {"sql_query_func": sqlite_query_func,"table_generation_func":table_generation_func,
|
44 |
"line_chart_generation_func":line_chart_generation_func,"bar_chart_generation_func":bar_chart_generation_func,
|
@@ -64,7 +64,7 @@ def chatbot_with_fc(message, history, session_hash):
|
|
64 |
messages.append(ChatMessage.from_user(message))
|
65 |
message_dict[session_hash] = messages
|
66 |
|
67 |
-
response = chat_generator.run(messages=message_dict[session_hash], generation_kwargs={"tools": tools.
|
68 |
|
69 |
while True:
|
70 |
# if OpenAI response is a tool call
|
@@ -82,12 +82,11 @@ def chatbot_with_fc(message, history, session_hash):
|
|
82 |
print(function_name)
|
83 |
## Append function response to the messages list using `ChatMessage.from_tool`
|
84 |
message_dict[session_hash].append(ChatMessage.from_tool(tool_result=function_response['reply'], origin=function_call))
|
85 |
-
response = chat_generator.run(messages=message_dict[session_hash], generation_kwargs={"tools": tools.
|
86 |
|
87 |
# Regular Conversation
|
88 |
else:
|
89 |
message_dict[session_hash].append(response["replies"][0])
|
90 |
break
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
38 |
def chatbot_with_fc(message, history, session_hash):
|
39 |
from functions import sqlite_query_func, table_generation_func, regression_func, scatter_chart_generation_func, \
|
40 |
line_chart_generation_func,bar_chart_generation_func,pie_chart_generation_func,histogram_generation_func
|
41 |
+
import tools.tools as tools
|
42 |
|
43 |
available_functions = {"sql_query_func": sqlite_query_func,"table_generation_func":table_generation_func,
|
44 |
"line_chart_generation_func":line_chart_generation_func,"bar_chart_generation_func":bar_chart_generation_func,
|
|
|
64 |
messages.append(ChatMessage.from_user(message))
|
65 |
message_dict[session_hash] = messages
|
66 |
|
67 |
+
response = chat_generator.run(messages=message_dict[session_hash], generation_kwargs={"tools": tools.data_file_tools_call(session_hash)})
|
68 |
|
69 |
while True:
|
70 |
# if OpenAI response is a tool call
|
|
|
82 |
print(function_name)
|
83 |
## Append function response to the messages list using `ChatMessage.from_tool`
|
84 |
message_dict[session_hash].append(ChatMessage.from_tool(tool_result=function_response['reply'], origin=function_call))
|
85 |
+
response = chat_generator.run(messages=message_dict[session_hash], generation_kwargs={"tools": tools.data_file_tools_call(session_hash)})
|
86 |
|
87 |
# Regular Conversation
|
88 |
else:
|
89 |
message_dict[session_hash].append(response["replies"][0])
|
90 |
break
|
91 |
+
|
92 |
+
return response["replies"][0].text
|
|
tools.py → tools/chart_tools.py
RENAMED
@@ -1,43 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
def tools_call(session_hash):
|
5 |
-
dir_path = TEMP_DIR / str(session_hash)
|
6 |
-
connection = sqlite3.connect(f'{dir_path}/data_source.db')
|
7 |
-
print("Querying Database in Tools.py");
|
8 |
-
cur=connection.execute('select * from data_source')
|
9 |
-
columns = [i[0] for i in cur.description]
|
10 |
-
print("COLUMNS 2")
|
11 |
-
print(columns)
|
12 |
-
cur.close()
|
13 |
-
connection.close()
|
14 |
-
|
15 |
-
column_string = (columns[:625] + '..') if len(columns) > 625 else columns
|
16 |
-
|
17 |
-
return [
|
18 |
-
{
|
19 |
-
"type": "function",
|
20 |
-
"function": {
|
21 |
-
"name": "sql_query_func",
|
22 |
-
"description": f"""This is a tool useful to query a SQLite table called 'data_source' with the following Columns: {column_string}.
|
23 |
-
There may also be more columns in the table if the number of columns is too large to process.
|
24 |
-
This function also saves the results of the query to csv file called query.csv.""",
|
25 |
-
"parameters": {
|
26 |
-
"type": "object",
|
27 |
-
"properties": {
|
28 |
-
"queries": {
|
29 |
-
"type": "array",
|
30 |
-
"description": "The query to use in the search. Infer this from the user's message. It should be a question or a statement",
|
31 |
-
"items": {
|
32 |
-
"type": "string",
|
33 |
-
}
|
34 |
-
}
|
35 |
-
},
|
36 |
-
"required": ["queries"],
|
37 |
-
},
|
38 |
-
},
|
39 |
-
},
|
40 |
-
{
|
41 |
"type": "function",
|
42 |
"function": {
|
43 |
"name": "scatter_chart_generation_func",
|
@@ -84,9 +46,9 @@ def tools_call(session_hash):
|
|
84 |
"trendline": {
|
85 |
"type": "string",
|
86 |
"description": f"""An optional field to specify the type of plotly trendline we wish to use in the scatter plot.
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
"items": {
|
91 |
"type": "string",
|
92 |
}
|
@@ -103,9 +65,9 @@ def tools_call(session_hash):
|
|
103 |
"marginal_x": {
|
104 |
"type": "string",
|
105 |
"description": f"""The type of marginal distribution plot we'd like to specify for the plotly scatter plot for the x axis.
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
"items": {
|
110 |
"type": "string",
|
111 |
}
|
@@ -113,9 +75,9 @@ def tools_call(session_hash):
|
|
113 |
"marginal_y": {
|
114 |
"type": "string",
|
115 |
"description": f"""The type of marginal distribution plot we'd like to specify for the plotly scatter plot for the y axis.
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
"items": {
|
120 |
"type": "string",
|
121 |
}
|
@@ -376,7 +338,7 @@ def tools_call(session_hash):
|
|
376 |
"type": "string",
|
377 |
"description": f"""An optional value that represents the function of data to compute the function which is used on the optional y column.
|
378 |
This histfunc value can be one of ['avg','sum','count'].
|
379 |
-
|
380 |
"items": {
|
381 |
"type": "string",
|
382 |
}
|
@@ -405,47 +367,5 @@ def tools_call(session_hash):
|
|
405 |
from the table_generation_func function in any way and always display the iframe fully to the user in the chat window.""",
|
406 |
"parameters": {},
|
407 |
},
|
408 |
-
},
|
409 |
-
{
|
410 |
-
"type": "function",
|
411 |
-
"function": {
|
412 |
-
"name": "regression_func",
|
413 |
-
"description": f"""This a tool to calculate regressions on our SQLite table called 'data_source'.
|
414 |
-
We can run queries with our 'sql_query_func' function and they will be available to use in this function via the query.csv file that is generated.
|
415 |
-
Returns a dictionary of values that includes a regression_summary and a regression chart (which is an iframe displaying the
|
416 |
-
linear regression in chart form and should be shown to the user).""",
|
417 |
-
"parameters": {
|
418 |
-
"type": "object",
|
419 |
-
"properties": {
|
420 |
-
"independent_variables": {
|
421 |
-
"type": "array",
|
422 |
-
"description": f"""An array of strings that states the independent variables in our data set which should be column names in our query.csv file that is generated
|
423 |
-
in the 'sql_query_func' function. This will allow us to identify the data to use for our independent variables.
|
424 |
-
Infer this from the user's message.""",
|
425 |
-
"items": {
|
426 |
-
"type": "string",
|
427 |
-
}
|
428 |
-
},
|
429 |
-
"dependent_variable": {
|
430 |
-
"type": "string",
|
431 |
-
"description": f"""A string that states the dependent variables in our data set which should be a column name in our query.csv file that is generated
|
432 |
-
in the 'sql_query_func' function. This will allow us to identify the data to use for our dependent variables.
|
433 |
-
Infer this from the user's message.""",
|
434 |
-
"items": {
|
435 |
-
"type": "string",
|
436 |
-
}
|
437 |
-
},
|
438 |
-
"category": {
|
439 |
-
"type": "string",
|
440 |
-
"description": f"""An optional column in our query.csv file that contain a parameter that will define the category for the data.
|
441 |
-
Do not send value if no category is needed or specified. This category must be present in our query.csv file to be valid.""",
|
442 |
-
"items": {
|
443 |
-
"type": "string",
|
444 |
-
}
|
445 |
-
}
|
446 |
-
},
|
447 |
-
"required": ["independent_variables","dependent_variable"],
|
448 |
-
},
|
449 |
-
},
|
450 |
}
|
451 |
-
|
|
|
1 |
+
chart_tools = [
|
2 |
+
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"type": "function",
|
4 |
"function": {
|
5 |
"name": "scatter_chart_generation_func",
|
|
|
46 |
"trendline": {
|
47 |
"type": "string",
|
48 |
"description": f"""An optional field to specify the type of plotly trendline we wish to use in the scatter plot.
|
49 |
+
This trendline value can be one of ['ols','lowess','rolling','ewm','expanding'].
|
50 |
+
Do not send any values outside of this array as the function will fail.
|
51 |
+
Infer this from the user's message.""",
|
52 |
"items": {
|
53 |
"type": "string",
|
54 |
}
|
|
|
65 |
"marginal_x": {
|
66 |
"type": "string",
|
67 |
"description": f"""The type of marginal distribution plot we'd like to specify for the plotly scatter plot for the x axis.
|
68 |
+
This marginal_x value can be one of ['histogram','rug','box','violin'].
|
69 |
+
Do not send any values outside of this array as the function will fail.
|
70 |
+
Infer this from the user's message.""",
|
71 |
"items": {
|
72 |
"type": "string",
|
73 |
}
|
|
|
75 |
"marginal_y": {
|
76 |
"type": "string",
|
77 |
"description": f"""The type of marginal distribution plot we'd like to specify for the plotly scatter plot for the y axis.
|
78 |
+
This marginal_y value can be one of ['histogram','rug','box','violin'].
|
79 |
+
Do not send any values outside of this array as the function will fail.
|
80 |
+
Infer this from the user's message.""",
|
81 |
"items": {
|
82 |
"type": "string",
|
83 |
}
|
|
|
338 |
"type": "string",
|
339 |
"description": f"""An optional value that represents the function of data to compute the function which is used on the optional y column.
|
340 |
This histfunc value can be one of ['avg','sum','count'].
|
341 |
+
Do not send any values outside of this array as the function will fail.""",
|
342 |
"items": {
|
343 |
"type": "string",
|
344 |
}
|
|
|
367 |
from the table_generation_func function in any way and always display the iframe fully to the user in the chat window.""",
|
368 |
"parameters": {},
|
369 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
}
|
371 |
+
]
|
tools/stats_tools.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
stats_tools = [
|
2 |
+
{
|
3 |
+
"type": "function",
|
4 |
+
"function": {
|
5 |
+
"name": "regression_func",
|
6 |
+
"description": f"""This a tool to calculate regressions on our SQLite table called 'data_source'.
|
7 |
+
We can run queries with our 'sql_query_func' function and they will be available to use in this function via the query.csv file that is generated.
|
8 |
+
Returns a dictionary of values that includes a regression_summary and a regression chart (which is an iframe displaying the
|
9 |
+
linear regression in chart form and should be shown to the user).""",
|
10 |
+
"parameters": {
|
11 |
+
"type": "object",
|
12 |
+
"properties": {
|
13 |
+
"independent_variables": {
|
14 |
+
"type": "array",
|
15 |
+
"description": f"""An array of strings that states the independent variables in our data set which should be column names in our query.csv file that is generated
|
16 |
+
in the 'sql_query_func' function. This will allow us to identify the data to use for our independent variables.
|
17 |
+
Infer this from the user's message.""",
|
18 |
+
"items": {
|
19 |
+
"type": "string",
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"dependent_variable": {
|
23 |
+
"type": "string",
|
24 |
+
"description": f"""A string that states the dependent variables in our data set which should be a column name in our query.csv file that is generated
|
25 |
+
in the 'sql_query_func' function. This will allow us to identify the data to use for our dependent variables.
|
26 |
+
Infer this from the user's message.""",
|
27 |
+
"items": {
|
28 |
+
"type": "string",
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"category": {
|
32 |
+
"type": "string",
|
33 |
+
"description": f"""An optional column in our query.csv file that contain a parameter that will define the category for the data.
|
34 |
+
Do not send value if no category is needed or specified. This category must be present in our query.csv file to be valid.""",
|
35 |
+
"items": {
|
36 |
+
"type": "string",
|
37 |
+
}
|
38 |
+
}
|
39 |
+
},
|
40 |
+
"required": ["independent_variables","dependent_variable"],
|
41 |
+
},
|
42 |
+
},
|
43 |
+
}
|
44 |
+
]
|
tools/tools.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sqlite3
|
2 |
+
from .stats_tools import stats_tools
|
3 |
+
from .chart_tools import chart_tools
|
4 |
+
from utils import TEMP_DIR
|
5 |
+
|
6 |
+
def data_file_tools_call(session_hash):
|
7 |
+
dir_path = TEMP_DIR / str(session_hash)
|
8 |
+
connection = sqlite3.connect(f'{dir_path}/data_source.db')
|
9 |
+
print("Querying Database in Tools.py");
|
10 |
+
cur=connection.execute('select * from data_source')
|
11 |
+
columns = [i[0] for i in cur.description]
|
12 |
+
print("COLUMNS 2")
|
13 |
+
print(columns)
|
14 |
+
cur.close()
|
15 |
+
connection.close()
|
16 |
+
|
17 |
+
column_string = (columns[:625] + '..') if len(columns) > 625 else columns
|
18 |
+
|
19 |
+
tools_calls = [
|
20 |
+
{
|
21 |
+
"type": "function",
|
22 |
+
"function": {
|
23 |
+
"name": "sql_query_func",
|
24 |
+
"description": f"""This is a tool useful to query a SQLite table called 'data_source' with the following Columns: {column_string}.
|
25 |
+
There may also be more columns in the table if the number of columns is too large to process.
|
26 |
+
This function also saves the results of the query to csv file called query.csv.""",
|
27 |
+
"parameters": {
|
28 |
+
"type": "object",
|
29 |
+
"properties": {
|
30 |
+
"queries": {
|
31 |
+
"type": "array",
|
32 |
+
"description": "The query to use in the search. Infer this from the user's message. It should be a question or a statement",
|
33 |
+
"items": {
|
34 |
+
"type": "string",
|
35 |
+
}
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"required": ["queries"],
|
39 |
+
},
|
40 |
+
},
|
41 |
+
},
|
42 |
+
]
|
43 |
+
|
44 |
+
tools_calls.extend(chart_tools)
|
45 |
+
tools_calls.extend(stats_tools)
|
46 |
+
|
47 |
+
return tools_calls
|
48 |
+
|
49 |
+
def graphql_tools_call(sessions_hash):
|
50 |
+
|
51 |
+
tools_calls = [
|
52 |
+
{
|
53 |
+
"type": "function",
|
54 |
+
"function": {
|
55 |
+
"name": "graphql_query_func",
|
56 |
+
"description": f"""This is a tool useful to query a GraphQL endpoint with the following Columns: {column_string}.
|
57 |
+
There may also be more columns in the table if the number of columns is too large to process.
|
58 |
+
This function also saves the results of the query to csv file called query.csv.""",
|
59 |
+
"parameters": {
|
60 |
+
"type": "object",
|
61 |
+
"properties": {
|
62 |
+
"queries": {
|
63 |
+
"type": "array",
|
64 |
+
"description": "The graphQL query to use in the search. Infer this from the user's message. It should be a question or a statement",
|
65 |
+
"items": {
|
66 |
+
"type": "string",
|
67 |
+
}
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"required": ["queries"],
|
71 |
+
},
|
72 |
+
},
|
73 |
+
},
|
74 |
+
]
|
75 |
+
|
76 |
+
tools_calls.append(chart_tools)
|
77 |
+
tools_calls.append(stats_tools)
|
78 |
+
|
79 |
+
return
|