|
from data_sources import process_data_upload
|
|
|
|
import gradio as gr
|
|
|
|
from haystack.dataclasses import ChatMessage
|
|
from haystack.components.generators.chat import OpenAIChatGenerator
|
|
|
|
import os
|
|
from getpass import getpass
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
if "OPENAI_API_KEY" not in os.environ:
|
|
os.environ["OPENAI_API_KEY"] = getpass("Enter OpenAI API key:")
|
|
|
|
chat_generator = OpenAIChatGenerator(model="gpt-4o")
|
|
response = None
|
|
messages = [
|
|
ChatMessage.from_system(
|
|
"You are a helpful and knowledgeable agent who has access to an SQL database which has a table called 'data_source'"
|
|
)
|
|
]
|
|
|
|
def chatbot_with_fc(message, history, session_hash):
|
|
from functions import sqlite_query_func, chart_generation_func
|
|
from pipelines import rag_pipeline_func
|
|
import tools
|
|
|
|
available_functions = {"sql_query_func": sqlite_query_func, "rag_pipeline_func": rag_pipeline_func, "chart_generation_func": chart_generation_func}
|
|
|
|
messages.append(ChatMessage.from_user(message))
|
|
response = chat_generator.run(messages=messages, generation_kwargs={"tools": tools.tools_call(session_hash)})
|
|
|
|
while True:
|
|
|
|
if response and response["replies"][0].meta["finish_reason"] == "tool_calls" or response["replies"][0].tool_calls:
|
|
function_calls = response["replies"][0].tool_calls
|
|
for function_call in function_calls:
|
|
messages.append(ChatMessage.from_assistant(tool_calls=[function_call]))
|
|
|
|
function_name = function_call.tool_name
|
|
function_args = function_call.arguments
|
|
|
|
|
|
function_to_call = available_functions[function_name]
|
|
function_response = function_to_call(**function_args, session_hash=session_hash)
|
|
print(function_name)
|
|
|
|
messages.append(ChatMessage.from_tool(tool_result=function_response['reply'], origin=function_call))
|
|
response = chat_generator.run(messages=messages, generation_kwargs={"tools": tools.tools_call(session_hash)})
|
|
|
|
|
|
else:
|
|
messages.append(response["replies"][0])
|
|
break
|
|
return response["replies"][0].text
|
|
|
|
def delete_db(req: gr.Request):
|
|
db_file_path = f'data_source_{req.session_hash}.db'
|
|
if os.path.exists(db_file_path):
|
|
os.remove(db_file_path)
|
|
|
|
def run_example(input):
|
|
return input
|
|
|
|
def example_display(input):
|
|
if input == None:
|
|
display = True
|
|
else:
|
|
display = False
|
|
return [gr.update(visible=display),gr.update(visible=display)]
|
|
|
|
css= ".file_marker .large{min-height:50px !important;} .example_btn{max-width:300px;}"
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
title = gr.HTML("<h1 style='text-align:center;'>Virtual Data Analyst</h1>")
|
|
description = gr.HTML("""<p style='text-align:center;'>Upload a data file and chat with our virtual data analyst
|
|
to get insights on your data set. Currently accepts CSV, TSV, TXT, XLS, XLSX, XML, and JSON files.
|
|
Can now generate charts and graphs!
|
|
Try a sample file to get started!</p>
|
|
<p style='text-align:center;'>This tool is under active development. If you experience bugs with use,
|
|
open a discussion in the community tab and I will respond.</p>""")
|
|
example_file_1 = gr.File(visible=False, value="samples/bank_marketing_campaign.csv")
|
|
example_file_2 = gr.File(visible=False, value="samples/online_retail_data.csv")
|
|
with gr.Row():
|
|
example_btn_1 = gr.Button(value="Try Me: bank_marketing_campaign.csv", elem_classes="example_btn", size="md", variant="primary")
|
|
example_btn_2 = gr.Button(value="Try Me: online_retail_data.csv", elem_classes="example_btn", size="md", variant="primary")
|
|
|
|
file_output = gr.File(label="Data File (CSV, TSV, TXT, XLS, XLSX, XML, JSON)", show_label=True, elem_classes="file_marker", file_types=['.csv','.xlsx','.txt','.json','.xml','.xls','.tsv'])
|
|
example_btn_1.click(fn=run_example, inputs=example_file_1, outputs=file_output)
|
|
example_btn_2.click(fn=run_example, inputs=example_file_2, outputs=file_output)
|
|
file_output.change(fn=example_display, inputs=file_output, outputs=[example_btn_1, example_btn_2])
|
|
|
|
@gr.render(inputs=file_output)
|
|
def data_options(filename, request: gr.Request):
|
|
print(filename)
|
|
if filename:
|
|
if "bank_marketing_campaign" in filename:
|
|
example_questions = [
|
|
["Describe the dataset"],
|
|
["What levels of education have the highest and lowest average balance?"],
|
|
["What job is most and least common for a yes response from the individuals, not counting 'unknown'?"],
|
|
["Can you generate a bar chart of education vs. average balance?"]
|
|
]
|
|
elif "online_retail_data" in filename:
|
|
example_questions = [
|
|
["Describe the dataset"],
|
|
["What month had the highest revenue?"],
|
|
["Is revenue higher in the morning or afternoon?"],
|
|
["Can you generate a line graph of revenue per month?"]
|
|
]
|
|
else:
|
|
example_questions = [
|
|
["Describe the dataset"],
|
|
["List the columns in the dataset"],
|
|
["What could this data be used for?"],
|
|
]
|
|
parameters = gr.Textbox(visible=False, value=request.session_hash)
|
|
bot = gr.Chatbot(type='messages', label="CSV Chat Window", render_markdown=True, sanitize_html=False, show_label=True, render=False, visible=True, elem_classes="chatbot")
|
|
chat = gr.ChatInterface(
|
|
fn=chatbot_with_fc,
|
|
type='messages',
|
|
chatbot=bot,
|
|
title="Chat with your data file",
|
|
concurrency_limit=None,
|
|
examples=example_questions,
|
|
additional_inputs=parameters
|
|
)
|
|
process_upload(filename, request.session_hash)
|
|
|
|
def process_upload(upload_value, session_hash):
|
|
if upload_value:
|
|
process_data_upload(upload_value, session_hash)
|
|
return [], []
|
|
|
|
demo.unload(delete_db)
|
|
|
|
|
|
|