|
from data_sources import process_data_upload
|
|
from functions import example_question_generator, chatbot_with_fc
|
|
from utils import TEMP_DIR, message_dict
|
|
import gradio as gr
|
|
|
|
import ast
|
|
import os
|
|
from getpass import getpass
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
if "OPENAI_API_KEY" not in os.environ:
|
|
os.environ["OPENAI_API_KEY"] = getpass("Enter OpenAI API key:")
|
|
|
|
def delete_db(req: gr.Request):
|
|
import shutil
|
|
dir_path = TEMP_DIR / str(req.session_hash)
|
|
if os.path.exists(dir_path):
|
|
shutil.rmtree(dir_path)
|
|
message_dict[req.session_hash] = None
|
|
|
|
def run_example(input):
|
|
return input
|
|
|
|
def example_display(input):
|
|
if input == None:
|
|
display = True
|
|
else:
|
|
display = False
|
|
return [gr.update(visible=display),gr.update(visible=display)]
|
|
|
|
css= ".file_marker .large{min-height:50px !important;} .example_btn{max-width:300px;} .padding{padding:0;}"
|
|
|
|
with gr.Blocks(css=css, delete_cache=(3600,3600)) as demo:
|
|
title = gr.HTML("<h1 style='text-align:center;'>Virtual Data Analyst</h1>")
|
|
description = gr.HTML("""<p style='text-align:center;'>A helpful tool for data analysis, visualizations, regressions, and more.
|
|
Upload a data file and chat with our virtual data analyst to get insights on your data set.
|
|
Try a sample file to get started!</p>
|
|
<ul style="margin:auto;max-width: 500px;">
|
|
<li style="margin:0;line-height:1;">Currently accepts CSV, TSV, TXT, XLS, XLSX, XML, and JSON files.</li>
|
|
<li style="margin:0;line-height:1;">Can run SQL queries, linear regressions, and analyze the results.</li>
|
|
<li style="margin:0;line-height:1;">Can generate scatter plots, line charts, pie charts, bar graphs, histograms, time series, and more.
|
|
New visualizations types added regularly.</li>
|
|
</ul>
|
|
<p style='text-align:center;'>This application is under active development. If you experience bugs with use,
|
|
open a discussion in the community tab and I will respond.</p>""")
|
|
example_file_1 = gr.File(visible=False, value="samples/bank_marketing_campaign.csv")
|
|
example_file_2 = gr.File(visible=False, value="samples/online_retail_data.csv")
|
|
with gr.Row():
|
|
example_btn_1 = gr.Button(value="Try Me: bank_marketing_campaign.csv", elem_classes="example_btn", size="md", variant="primary")
|
|
example_btn_2 = gr.Button(value="Try Me: online_retail_data.csv", elem_classes="example_btn", size="md", variant="primary")
|
|
|
|
file_output = gr.File(label="Data File (CSV, TSV, TXT, XLS, XLSX, XML, JSON)", show_label=True, elem_classes="file_marker", file_types=['.csv','.xlsx','.txt','.json','.ndjson','.xml','.xls','.tsv'])
|
|
example_btn_1.click(fn=run_example, inputs=example_file_1, outputs=file_output)
|
|
example_btn_2.click(fn=run_example, inputs=example_file_2, outputs=file_output)
|
|
file_output.change(fn=example_display, inputs=file_output, outputs=[example_btn_1, example_btn_2])
|
|
|
|
@gr.render(inputs=file_output)
|
|
def data_options(filename, request: gr.Request):
|
|
print(filename)
|
|
message_dict[request.session_hash] = None
|
|
if filename:
|
|
process_message = process_upload(filename, request.session_hash)
|
|
gr.HTML(value=process_message[1], padding=False)
|
|
if process_message[0] == "success":
|
|
if "bank_marketing_campaign" in filename:
|
|
example_questions = [
|
|
["Describe the dataset"],
|
|
["What levels of education have the highest and lowest average balance?"],
|
|
["What job is most and least common for a yes response from the individuals, not counting 'unknown'?"],
|
|
["Can you generate a bar chart of education vs. average balance?"],
|
|
["Can you generate a table of levels of education versus average balance, percent married, percent with a loan, and percent in default?"],
|
|
["Can we predict the relationship between the number of contacts performed before this campaign and the average balance?"],
|
|
["Can you plot the number of contacts performed before this campaign versus the duration and use balance as the size in a bubble chart?"]
|
|
]
|
|
elif "online_retail_data" in filename:
|
|
example_questions = [
|
|
["Describe the dataset"],
|
|
["What month had the highest revenue?"],
|
|
["Is revenue higher in the morning or afternoon?"],
|
|
["Can you generate a line graph of revenue per month?"],
|
|
["Can you generate a table of revenue per month?"],
|
|
["Can we predict how time of day affects transaction value in this data set?"],
|
|
["Can you plot revenue per month with size being the number of units sold that month in a bubble chart?"]
|
|
]
|
|
else:
|
|
try:
|
|
generated_examples = ast.literal_eval(example_question_generator(request.session_hash))
|
|
example_questions = [
|
|
["Describe the dataset"]
|
|
]
|
|
for example in generated_examples:
|
|
example_questions.append([example])
|
|
except:
|
|
example_questions = [
|
|
["Describe the dataset"],
|
|
["List the columns in the dataset"],
|
|
["What could this data be used for?"],
|
|
]
|
|
parameters = gr.Textbox(visible=False, value=request.session_hash)
|
|
bot = gr.Chatbot(type='messages', label="CSV Chat Window", render_markdown=True, sanitize_html=False, show_label=True, render=False, visible=True, elem_classes="chatbot")
|
|
chat = gr.ChatInterface(
|
|
fn=chatbot_with_fc,
|
|
type='messages',
|
|
chatbot=bot,
|
|
title="Chat with your data file",
|
|
concurrency_limit=None,
|
|
examples=example_questions,
|
|
additional_inputs=parameters
|
|
)
|
|
|
|
def process_upload(upload_value, session_hash):
|
|
if upload_value:
|
|
process_message = process_data_upload(upload_value, session_hash)
|
|
return process_message
|
|
|
|
demo.unload(delete_db)
|
|
|
|
|
|
demo.launch(debug=True, allowed_paths=["temp/"]) |