File size: 13,537 Bytes
ccbdd61
32f5b77
 
 
 
 
 
95c52e2
 
 
 
 
 
 
 
 
1862a57
274670b
 
 
dd82d0a
95c52e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f5b77
c101c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb65c41
76271c7
 
3d87c18
32f5b77
76271c7
 
 
 
 
60f68c4
c101c53
 
95c52e2
 
 
535f75c
1862a57
 
 
 
 
 
c101c53
1862a57
c101c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862a57
 
 
 
 
 
c101c53
1862a57
95c52e2
 
 
c101c53
95c52e2
c101c53
32f5b77
 
 
fb65c41
32f5b77
 
c101c53
32f5b77
 
 
 
60f68c4
32f5b77
c101c53
 
60f68c4
32f5b77
c101c53
 
32f5b77
 
 
c101c53
32f5b77
3d87c18
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from utils import TEMP_DIR, message_dict

from haystack.dataclasses import ChatMessage
from haystack.components.generators.chat import OpenAIChatGenerator

chat_generator = OpenAIChatGenerator(model="gpt-4o")
response = None

def example_question_generator(session_hash):
    import sqlite3
    example_response = None
    example_messages = [
        ChatMessage.from_system(
            "You are a helpful and knowledgeable agent who has access to an SQLite database which has a table called 'data_source'."
        )
    ]

    session_path = 'file_upload'

    dir_path = TEMP_DIR / str(session_hash) / str(session_path)
    connection = sqlite3.connect(f'{dir_path}/data_source.db')
    print("Querying questions");
    cur=connection.execute('select * from data_source')
    columns = [i[0] for i in cur.description]
    print("QUESTION COLUMNS")
    print(columns)
    cur.close()
    connection.close()

    example_messages.append(ChatMessage.from_user(text=f"""We have a SQLite database with the following {columns}. 

                                                  We also have an AI agent with access to the same database that will be performing data analysis.

                                                  Please return an array of seven strings, each one being a question for our data analysis agent

                                                  that we can suggest that you believe will be insightful or helpful to a data analysis looking for

                                                  data insights. Return nothing more than the array of questions because I need that specific data structure

                                                  to process your response. No other response type or data structure will work."""))

    example_response = chat_generator.run(messages=example_messages)

    return example_response["replies"][0].text

def sql_example_question_generator(session_hash, db_tables, db_name):
    example_response = None
    example_messages = [
        ChatMessage.from_system(
            f"You are a helpful and knowledgeable agent who has access to an PostgreSQL database called {db_name}."
        )
    ]

    example_messages.append(ChatMessage.from_user(text=f"""We have a PostgreSQL database with the following tables: {db_tables}. 

                                                  We also have an AI agent with access to the same database that will be performing data analysis.

                                                  Please return an array of seven strings, each one being a question for our data analysis agent

                                                  that we can suggest that you believe will be insightful or helpful to a data analysis looking for

                                                  data insights. Return nothing more than the array of questions because I need that specific data structure

                                                  to process your response. No other response type or data structure will work."""))

    example_response = chat_generator.run(messages=example_messages)

    return example_response["replies"][0].text

def chatbot_with_fc(message, history, session_hash):
    from functions import sqlite_query_func, table_generation_func, regression_func, scatter_chart_generation_func, \
        line_chart_generation_func,bar_chart_generation_func,pie_chart_generation_func,histogram_generation_func
    import tools.tools as tools

    available_functions = {"sql_query_func": sqlite_query_func,"table_generation_func":table_generation_func,
                           "line_chart_generation_func":line_chart_generation_func,"bar_chart_generation_func":bar_chart_generation_func,
                           "scatter_chart_generation_func":scatter_chart_generation_func, "pie_chart_generation_func":pie_chart_generation_func,
                           "histogram_generation_func":histogram_generation_func,
                           "regression_func":regression_func }

    if message_dict[session_hash]['file_upload'] != None:
        message_dict[session_hash]['file_upload'].append(ChatMessage.from_user(message))
    else:
        messages = [
            ChatMessage.from_system(
                """You are a helpful and knowledgeable agent who has access to an SQLite database which has a table called 'data_source'. 

                You also have access to a function, called table_generation_func, that can take a query.csv file generated from our sql query and returns an iframe that we should display in our chat window.

                You also have access to a scatter plot function, called scatter_chart_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a scatter plot and returns an iframe that we should display in our chat window.

                You also have access to a line chart function, called line_chart_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a line chart and returns an iframe that we should display in our chat window.

                You also have access to a bar graph function, called line_chart_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a bar graph and returns an iframe that we should display in our chat window.

                You also have access to a pie chart function, called pie_chart_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a pie chart and returns an iframe that we should display in our chat window.

                You also have access to a histogram function, called histogram_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a histogram and returns an iframe that we should display in our chat window.

                You also have access to a linear regression function, called regression_func, that can take a query.csv file generated from our sql query and a list of column names for our independent and dependent variables and return a regression data string and a regression chart which is returned as an iframe.

                Could you please always display the generated charts, tables, and visualizations as part of your output?"""
            )
        ]
        messages.append(ChatMessage.from_user(message))
        message_dict[session_hash]['file_upload'] = messages

    response = chat_generator.run(messages=message_dict[session_hash]['file_upload'], generation_kwargs={"tools": tools.data_file_tools_call(session_hash)})

    while True:
        # if OpenAI response is a tool call
        if response and response["replies"][0].meta["finish_reason"] == "tool_calls" or response["replies"][0].tool_calls:
            function_calls = response["replies"][0].tool_calls
            for function_call in function_calls:
                message_dict[session_hash]['file_upload'].append(ChatMessage.from_assistant(tool_calls=[function_call]))
                ## Parse function calling information
                function_name = function_call.tool_name
                function_args = function_call.arguments

                ## Find the corresponding function and call it with the given arguments
                function_to_call = available_functions[function_name]
                function_response = function_to_call(**function_args, session_hash=session_hash, session_folder='file_upload')
                print(function_name)
                ## Append function response to the messages list using `ChatMessage.from_tool`
                message_dict[session_hash]['file_upload'].append(ChatMessage.from_tool(tool_result=function_response['reply'], origin=function_call))
                response = chat_generator.run(messages=message_dict[session_hash]['file_upload'], generation_kwargs={"tools": tools.data_file_tools_call(session_hash)})

        # Regular Conversation
        else:
            message_dict[session_hash]['file_upload'].append(response["replies"][0])
            break

    return response["replies"][0].text

def sql_chatbot_with_fc(message, history, session_hash, db_url, db_port, db_user, db_pass, db_name, db_tables):
    from functions import sql_query_func, table_generation_func, regression_func, scatter_chart_generation_func, \
        line_chart_generation_func,bar_chart_generation_func,pie_chart_generation_func,histogram_generation_func
    import tools.tools as tools

    available_functions = {"sql_query_func": sql_query_func,"table_generation_func":table_generation_func,
                           "line_chart_generation_func":line_chart_generation_func,"bar_chart_generation_func":bar_chart_generation_func,
                           "scatter_chart_generation_func":scatter_chart_generation_func, "pie_chart_generation_func":pie_chart_generation_func,
                           "histogram_generation_func":histogram_generation_func,
                           "regression_func":regression_func }

    if message_dict[session_hash]['sql'] != None:
        message_dict[session_hash]['sql'].append(ChatMessage.from_user(message))
    else:
        messages = [
            ChatMessage.from_system(
                f"""You are a helpful and knowledgeable agent who has access to an PostgreSQL database which has a series of tables called {db_tables}. 

                You also have access to a function, called table_generation_func, that can take a query.csv file generated from our sql query and returns an iframe that we should display in our chat window.

                You also have access to a scatter plot function, called scatter_chart_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a scatter plot and returns an iframe that we should display in our chat window.

                You also have access to a line chart function, called line_chart_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a line chart and returns an iframe that we should display in our chat window.

                You also have access to a bar graph function, called line_chart_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a bar graph and returns an iframe that we should display in our chat window.

                You also have access to a pie chart function, called pie_chart_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a pie chart and returns an iframe that we should display in our chat window.

                You also have access to a histogram function, called histogram_generation_func, that can take a query.csv file generated from our sql query and uses plotly dictionaries to generate a histogram and returns an iframe that we should display in our chat window.

                You also have access to a linear regression function, called regression_func, that can take a query.csv file generated from our sql query and a list of column names for our independent and dependent variables and return a regression data string and a regression chart which is returned as an iframe.

                Could you please always display the generated charts, tables, and visualizations as part of your output?"""
            )
        ]
        messages.append(ChatMessage.from_user(message))
        message_dict[session_hash]['sql'] = messages

    response = chat_generator.run(messages=message_dict[session_hash]['sql'], generation_kwargs={"tools": tools.sql_tools_call(db_tables)})

    while True:
        # if OpenAI response is a tool call
        if response and response["replies"][0].meta["finish_reason"] == "tool_calls" or response["replies"][0].tool_calls:
            function_calls = response["replies"][0].tool_calls
            for function_call in function_calls:
                message_dict[session_hash]['sql'].append(ChatMessage.from_assistant(tool_calls=[function_call]))
                ## Parse function calling information
                function_name = function_call.tool_name
                function_args = function_call.arguments

                ## Find the corresponding function and call it with the given arguments
                function_to_call = available_functions[function_name]
                function_response = function_to_call(**function_args, session_hash=session_hash, db_url=db_url, 
                                                     db_port=db_port, db_user=db_user, db_pass=db_pass, db_name=db_name, session_folder='sql')
                print(function_name)
                ## Append function response to the messages list using `ChatMessage.from_tool`
                message_dict[session_hash]['sql'].append(ChatMessage.from_tool(tool_result=function_response['reply'], origin=function_call))
                response = chat_generator.run(messages=message_dict[session_hash]['sql'], generation_kwargs={"tools": tools.sql_tools_call(db_tables)})

        # Regular Conversation
        else:
            message_dict[session_hash]['sql'].append(response["replies"][0])
            break
        
    return response["replies"][0].text