File size: 3,675 Bytes
24371db fb65c41 2336a25 24371db 2336a25 24371db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
from haystack import Pipeline
from haystack.components.builders import PromptBuilder
from haystack.components.generators.openai import OpenAIGenerator
from haystack.components.routers import ConditionalRouter
from functions import SQLiteQuery
from typing import List
import sqlite3
import os
from getpass import getpass
from dotenv import load_dotenv
load_dotenv()
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass("Enter OpenAI API key:")
from haystack.components.builders import PromptBuilder
from haystack.components.generators import OpenAIGenerator
llm = OpenAIGenerator(model="gpt-4o")
def rag_pipeline_func(queries: str, columns: str, session_hash):
sql_query = SQLiteQuery(f'data_source_{session_hash}.db')
connection = sqlite3.connect(f'data_source_{session_hash}.db')
cur=connection.execute('select * from data_source')
columns = [i[0] for i in cur.description]
cur.close()
#Rag Pipeline
prompt = PromptBuilder(template="""Please generate an SQL query. The query should answer the following Question: {{question}};
If the question cannot be answered given the provided table and columns, return 'no_answer'
The query is to be answered for the table is called 'data_source' with the following
Columns: {{columns}};
Answer:""")
routes = [
{
"condition": "{{'no_answer' not in replies[0]}}",
"output": "{{replies}}",
"output_name": "sql",
"output_type": List[str],
},
{
"condition": "{{'no_answer' in replies[0]}}",
"output": "{{question}}",
"output_name": "go_to_fallback",
"output_type": str,
},
]
router = ConditionalRouter(routes)
fallback_prompt = PromptBuilder(template="""User entered a query that cannot be answered with the given table.
The query was: {{question}} and the table had columns: {{columns}}.
Let the user know why the question cannot be answered""")
fallback_llm = OpenAIGenerator(model="gpt-4")
conditional_sql_pipeline = Pipeline()
conditional_sql_pipeline.add_component("prompt", prompt)
conditional_sql_pipeline.add_component("llm", llm)
conditional_sql_pipeline.add_component("router", router)
conditional_sql_pipeline.add_component("fallback_prompt", fallback_prompt)
conditional_sql_pipeline.add_component("fallback_llm", fallback_llm)
conditional_sql_pipeline.add_component("sql_querier", sql_query)
conditional_sql_pipeline.connect("prompt", "llm")
conditional_sql_pipeline.connect("llm.replies", "router.replies")
conditional_sql_pipeline.connect("router.sql", "sql_querier.queries")
conditional_sql_pipeline.connect("router.go_to_fallback", "fallback_prompt.question")
conditional_sql_pipeline.connect("fallback_prompt", "fallback_llm")
print("RAG PIPELINE FUNCTION")
result = conditional_sql_pipeline.run({"prompt": {"question": queries,
"columns": columns},
"router": {"question": queries},
"fallback_prompt": {"columns": columns}})
if 'sql_querier' in result:
reply = result['sql_querier']['results'][0]
elif 'fallback_llm' in result:
reply = result['fallback_llm']['replies'][0]
else:
reply = result["llm"]["replies"][0]
print("reply content")
print(reply.content)
return {"reply": reply.content} |