Spaces:
Sleeping
Sleeping
File size: 11,019 Bytes
2028cec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
from llama_index.core import load_index_from_storage, StorageContext, SimpleDirectoryReader, VectorStoreIndex, QueryBundle
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
from llama_index.llms.groq import Groq
from llama_index.llms.ollama import Ollama
from llama_index.readers.file import DocxReader
from llama_index.core.node_parser import SimpleFileNodeParser, SentenceSplitter, SimpleNodeParser
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.core.retrievers import RecursiveRetriever
from llama_index.core.schema import IndexNode
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.core.query_engine import RetrieverQueryEngine
import faiss
import re
from core.config import settings
from llama_index.core.schema import MetadataMode
import pickle
from llama_index.core.node_parser import SentenceWindowNodeParser
from llama_index.core.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.postprocessor.cohere_rerank import CohereRerank
from prompt.prompt import qa_prompt_tmpl, refine_prompt_tmpl
# #Settings
# Settings.embed_model = HuggingFaceEmbedding(
# model_name= settings.EMBEDDING_MODEL
# )
# Settings.llm = Groq(model=settings.MODEL_ID, api_key= settings.MODEL_API_KEY)
Settings.embed_model = OpenAIEmbedding(
model_name= settings.OPENAI_EMBEDDING_MODEL
)
Settings.llm = OpenAI(model = settings.OPENAI_MODEL,
api_key = settings.OPENAI_API_KEY, max_tokens = 512)
def windows_parser(documents: str):
# create the sentence window node parser w/ default settings
# d = settings.EMBEDDING_MODEL_DIMENSIONS
d = settings.OPENAI_EMBEDDING_MODEL_DIMS
faiss_index = faiss.IndexFlatL2(d)
# assign faiss as the vector_store to the context
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
node_parser = SentenceWindowNodeParser.from_defaults(
window_size=50,
window_metadata_key="window",
original_text_metadata_key="original_text",
)
sentence_nodes = node_parser.get_nodes_from_documents(documents)
sentence_index = VectorStoreIndex(sentence_nodes,
storage_context=storage_context,
show_progress=True,)
sentence_index.storage_context.persist()
def window_query(query: str):
vector_store = FaissVectorStore.from_persist_dir("./storage")
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir="./storage"
)
sentence_index = load_index_from_storage(storage_context=storage_context)
query_engine = sentence_index.as_query_engine(
similarity_top_k=3,
# the target key defaults to `window` to match the node_parser's default
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window"),
CohereRerank(api_key=settings.COHERE_API_KEY, top_n=2),
],
verbose=True,
)
query_engine.update_prompts(
{"response_synthesizer:text_qa_template": qa_prompt_tmpl,
"response_synthesizer:refine_template": refine_prompt_tmpl,}
)
response = query_engine.query(f"{query}")
window = response.source_nodes[0].node.metadata["window"][:500]
sentence = response.source_nodes[0].node.metadata["original_text"][:500]
print(f"Window: {window}")
print("------------------")
print(f"Original Sentence: {sentence}")
return str(response)
def document_prepare(path: str):
#load documents
documents = SimpleDirectoryReader(path, file_extractor = {'.docx': DocxReader()}).load_data()
print(len(documents))
#extract metadata if needed
# extract_metadata(documents)
# documents[0].excluded_llm_metadata_keys = ["law_number", "file_name", "file_type", "file_size","creation_date", "last_modified_date"]
# documents[0].excluded_embed_metadata_keys = ["law_number", "law_name","file_name", "file_type", "file_size","creation_date", "last_modified_date"]
# # print("LLM: ",documents[0].get_content(metadata_mode=MetadataMode.LLM)[:500])
# print("Embed: ", documents[0].get_content(metadata_mode=MetadataMode.EMBED)[:500])
return documents
def extract_metadata(docs: list) -> None:
for doc in docs:
text = doc.text
# The regular expression pattern
pattern_laws_number = r"(?i)số[:\s]+([^\s.,]+)"
pattern_laws_name = r"(NGHỊ ĐỊNH|LUẬT)\s+(.*?)\s+Căn cứ"
# Find the match
match_laws_number = re.search(pattern_laws_number, text)
match_laws_name = re.search(pattern_laws_name, text)
# Extract and print the result if a match is found
# print("before:", doc.metadata)
if match_laws_number:
# print("Found:", match_laws_number.group(1)) # Output: 59/2020/QH14
(doc.metadata) = {**doc.metadata, "law_number" : f"{match_laws_number.group(1)}"}
if match_laws_name:
# print("Found:", f"{match_laws_name.group(1)} {match_laws_name.group(2)}") # Output: Luật doanh nghiệp
(doc.metadata) = {**doc.metadata, "law_name" : f"{match_laws_name.group(1)} {match_laws_name.group(2)}"}
# print("after:", doc.metadata, "\n")
def faiss_setup(documents: list) -> None :
d = settings.OPENAI_EMBEDDING_MODEL_DIMS
faiss_index = faiss.IndexFlatL2(d)
# assign faiss as the vector_store to the context
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
storage_context = storage_context)
def faiss_load(query: str) -> str:
vector_store = FaissVectorStore.from_persist_dir("./storage")
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir="./storage"
)
index = load_index_from_storage(storage_context=storage_context)
query_engine = index.as_query_engine()
vector_retriever = index.as_retriever(similarity_top_k=2)
response = query_engine.query(query)
retrieved_nodes = vector_retriever.retrieve(query)
print(retrieved_nodes[0])
return response
def get_all_nodes(documents: list):
# Save all_nodes to a file
node_parser = SimpleNodeParser.from_defaults(chunk_size=settings.MAX_NEW_TOKENS, chunk_overlap= settings.MAX_OVERLAPS)
base_nodes = node_parser.get_nodes_from_documents(documents)
# set node ids to be a constant
for idx, node in enumerate(base_nodes):
node.id_ = f"node-{idx}"
#original: 1024. Divided into 8 128, 4 256, 2 512
sub_chunk_sizes = [(settings.MAX_NEW_TOKENS/8), (settings.MAX_NEW_TOKENS/4), (settings.MAX_NEW_TOKENS/2)]
sub_overlap_sizes = [(settings.MAX_OVERLAPS/8), (settings.MAX_OVERLAPS/4), (settings.MAX_OVERLAPS/2)]
sub_node_parsers = [
SimpleNodeParser.from_defaults(chunk_size=c, chunk_overlap=o) for c, o in zip(sub_chunk_sizes, sub_overlap_sizes)
]
all_nodes = []
for base_node in base_nodes:
for n in sub_node_parsers:
sub_nodes = n.get_nodes_from_documents([base_node])
sub_inodes = [
IndexNode.from_text_node(sn, base_node.node_id) for sn in sub_nodes
]
all_nodes.extend(sub_inodes)
# also add original node to node
original_node = IndexNode.from_text_node(base_node, base_node.node_id)
all_nodes.append(original_node)
# print('done nodes')
return all_nodes
def sub_chunk_setup(all_nodes:list ) -> None:
# Load all_nodes from a file
# d = settings.OPENAI_EMBEDDING_MODEL_DIMS
d = settings.EMBEDDING_MODEL_DIMENSIONS
faiss_index = faiss.IndexFlatL2(d)
# assign faiss as the vector_store to the context
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(
all_nodes,
storage_context = storage_context,
show_progress= True
)
print('done setup')
index.storage_context.persist()
def sub_chunk_query(all_nodes:list, query: str) -> str:
# Load all_nodes from a file
all_nodes_dict = {n.node_id: n for n in all_nodes}
vector_store = FaissVectorStore.from_persist_dir("./storage")
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir="./storage"
)
index = load_index_from_storage(storage_context=storage_context)
vector_retriever_chunk = index.as_retriever(similarity_top_k=3)
retriever_chunk = RecursiveRetriever(
"vector",
retriever_dict={"vector": vector_retriever_chunk},
node_dict=all_nodes_dict,
verbose=True,
)
nodes = retriever_chunk.retrieve(QueryBundle(query))
for node in nodes:
display_source_node(node, source_length=2000)
# print(settings.MAX_NEW_TOKENS)
query_engine = RetrieverQueryEngine.from_args(
retriever_chunk, storage_context = storage_context
)
response = str(query_engine.query(f"{query}"))
# print(response)
return response
if __name__ == "__main__":
documents = document_prepare(settings.RAW_DATA_DIR)
# all_nodes = get_all_nodes(documents)
# faiss_setup(documents)
# sub_chunk_setup(all_nodes)
# windows_parser(documents)
# examples=[
# 'Chào bán cổ phần cho cổ đông hiện hữu của công ty cổ phần không phải là công ty đại chúng được thực hiện ra sao ?',
# 'Quyền của doanh nghiệp là những quyền nào?',
# 'Các trường hợp nào được coi là tên gây nhầm lẫn ?',
# 'Các quy định về chào bán trái phiếu riêng lẻ',
# 'Doanh nghiệp có quyền và nghĩa vụ như thế nào?',
# 'Thành lập công ty TNHH thì quy trình như thế nào?'
# ]
examples = [
"Công ty cổ phần là gì?",
"Định nghĩa về “góp vốn” trong Luật Doanh nghiệp là gì?",
"Khái niệm “cổ đông” được hiểu như thế nào?",
"Thế nào là “vốn điều lệ” trong doanh nghiệp?",
"“Doanh nghiệp có vốn đầu tư nước ngoài” là gì?"
]
for example in examples:
# query = examples[3]
query = example
print("///////////////////////////////")
print(query)
# print(faiss_load(query))
# print(sub_chunk_query(all_nodes, query))
print("Answer:", window_query(query))
print("\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\")
|