Spaces:
Sleeping
Sleeping
File size: 4,943 Bytes
cf7a28a cfda68d 0e91dea cfda68d dc0278a aa16976 0e91dea cfda68d 319adbb cfda68d dc0278a aa16976 cfda68d cf7a28a dc0278a 0e91dea dc0278a ce08ada 0e91dea dc0278a cf7a28a dc0278a aa16976 dc0278a aa16976 0e91dea dc0278a 0e91dea dc0278a aa16976 dc0278a aa16976 cf7a28a dc0278a 0e91dea dc0278a 0e91dea ce08ada dc0278a aa16976 ce08ada dc0278a aa16976 ce08ada 0e91dea cf7a28a dc0278a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
import os
from dotenv import load_dotenv
import requests
from typing import Dict, Any, List
from pydantic import BaseModel
import time
import json
load_dotenv()
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"]
)
# Получаем переменные окружения
FLOWISE_API_BASE_URL = os.getenv("FLOWISE_API_BASE_URL")
FLOWISE_CHATFLOW_ID = os.getenv("FLOWISE_CHATFLOW_ID")
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: float = 0.7
def count_tokens(text: str) -> int:
# Простой подсчет токенов (слова + знаки препинания)
return len(text.split()) + len([c for c in text if c in ".,!?;:()[]{}"])
def clean_assistant_response(text: str) -> str:
# Удаляем лишние маркеры кода и форматирования
text = text.strip()
if text.endswith("```"):
text = text[:-3].strip()
return text
@app.get("/")
async def root():
response = JSONResponse({"status": "FastFlowWrapper is running"})
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
@app.get("/v1/models")
async def get_models():
try:
# Запрашиваем список чатфлоу из Flowise
response = requests.get(f"{FLOWISE_API_BASE_URL}/chatflows")
response.raise_for_status()
chatflows = response.json()
# Преобразуем в формат OpenAI API
models = []
for chatflow in chatflows:
models.append({
"id": chatflow.get("id"),
"object": "model",
"created": int(time.time()),
"owned_by": "flowise",
"permission": [],
"root": "flowise",
"parent": None,
"system_fingerprint": "phi4-r1"
})
response = JSONResponse({"object": "list", "data": models})
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
try:
# Получаем последнее сообщение из диалога
last_message = request.messages[-1]
if last_message.role != "user":
raise HTTPException(status_code=400, detail="Last message must be from user")
# Подсчитываем токены запроса
prompt_tokens = count_tokens(last_message.content)
# Формируем запрос к Flowise
flowise_request = {
"question": last_message.content
}
# Засекаем время начала запроса
start_time = time.time()
# Отправляем запрос к Flowise с таймаутом
response = requests.post(
f"{FLOWISE_API_BASE_URL}/prediction/{FLOWISE_CHATFLOW_ID}",
json=flowise_request,
timeout=10 # Уменьшаем таймаут до 10 секунд
)
response.raise_for_status()
# Получаем и очищаем ответ
flowise_response = response.json()
assistant_response = clean_assistant_response(flowise_response.get("text", ""))
# Подсчитываем токены ответа
completion_tokens = count_tokens(assistant_response)
response = JSONResponse({
"id": "chatcmpl-" + os.urandom(12).hex(),
"object": "chat.completion",
"created": int(start_time),
"model": "phi4-r1",
"choices": [
{
"index": 0,
"logprobs": None,
"finish_reason": "stop",
"message": {
"role": "assistant",
"content": assistant_response
}
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
},
"stats": {},
"system_fingerprint": "phi4-r1"
})
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=str(e)) |