File size: 4,839 Bytes
cfda68d
 
dc0278a
cfda68d
 
dc0278a
 
 
aa16976
cfda68d
 
 
 
 
 
 
 
 
319adbb
cfda68d
 
dc0278a
 
 
 
 
 
 
 
 
 
 
 
 
aa16976
 
 
 
 
 
 
 
 
 
 
cfda68d
 
dc0278a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa16976
dc0278a
 
 
ce08ada
 
dc0278a
 
 
 
 
 
 
 
 
 
 
 
 
 
aa16976
 
 
dc0278a
 
 
 
 
aa16976
 
 
dc0278a
 
 
 
 
 
 
aa16976
dc0278a
aa16976
 
 
 
 
dc0278a
 
 
aa16976
ce08ada
dc0278a
 
 
ce08ada
 
dc0278a
 
aa16976
ce08ada
dc0278a
 
 
aa16976
 
 
ce08ada
 
 
dc0278a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
import os
from dotenv import load_dotenv
import requests
from typing import Dict, Any, List
from pydantic import BaseModel
import time

load_dotenv()

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"]
)

# Получаем переменные окружения
FLOWISE_API_BASE_URL = os.getenv("FLOWISE_API_BASE_URL")
FLOWISE_CHATFLOW_ID = os.getenv("FLOWISE_CHATFLOW_ID")

class ChatMessage(BaseModel):
    role: str
    content: str

class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    temperature: float = 0.7

def count_tokens(text: str) -> int:
    # Простой подсчет токенов (слова + знаки препинания)
    return len(text.split()) + len([c for c in text if c in ".,!?;:()[]{}"])

def clean_assistant_response(text: str) -> str:
    # Удаляем лишние маркеры кода и форматирования
    text = text.strip()
    if text.endswith("```"):
        text = text[:-3].strip()
    return text

@app.get("/")
async def root():
    return {"status": "FastFlowWrapper is running"}

@app.get("/v1/models")
async def get_models():
    try:
        # Запрашиваем список чатфлоу из Flowise
        response = requests.get(f"{FLOWISE_API_BASE_URL}/chatflows")
        response.raise_for_status()
        chatflows = response.json()
        
        # Преобразуем в формат OpenAI API
        models = []
        for chatflow in chatflows:
            models.append({
                "id": chatflow.get("id"),
                "object": "model",
                "created": int(time.time()),  # Текущий timestamp
                "owned_by": "flowise",
                "permission": [],
                "root": "flowise",
                "parent": None,
                "system_fingerprint": "phi4-r1"  # Добавляем system_fingerprint
            })
        
        return {"object": "list", "data": models}
    except requests.RequestException as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
    try:
        # Получаем последнее сообщение из диалога
        last_message = request.messages[-1]
        if last_message.role != "user":
            raise HTTPException(status_code=400, detail="Last message must be from user")
        
        # Подсчитываем токены запроса
        prompt_tokens = count_tokens(last_message.content)
        
        # Формируем запрос к Flowise
        flowise_request = {
            "question": last_message.content
        }
        
        # Засекаем время начала запроса
        start_time = time.time()
        
        # Отправляем запрос к Flowise
        response = requests.post(
            f"{FLOWISE_API_BASE_URL}/prediction/{FLOWISE_CHATFLOW_ID}",
            json=flowise_request
        )
        response.raise_for_status()
        
        # Получаем и очищаем ответ
        flowise_response = response.json()
        assistant_response = clean_assistant_response(flowise_response.get("text", ""))
        
        # Подсчитываем токены ответа
        completion_tokens = count_tokens(assistant_response)
        
        return {
            "id": "chatcmpl-" + os.urandom(12).hex(),
            "object": "chat.completion",
            "created": int(start_time),  # Используем время начала запроса
            "model": "phi4-r1",  # Используем тот же model_id что и в прямом API
            "choices": [
                {
                    "index": 0,
                    "logprobs": None,  # Добавляем поле logprobs
                    "finish_reason": "stop",
                    "message": {
                        "role": "assistant",
                        "content": assistant_response
                    }
                }
            ],
            "usage": {
                "prompt_tokens": prompt_tokens,
                "completion_tokens": completion_tokens,
                "total_tokens": prompt_tokens + completion_tokens
            },
            "stats": {},  # Добавляем пустой объект stats
            "system_fingerprint": "phi4-r1"  # Добавляем system_fingerprint
        }
    except requests.RequestException as e:
        raise HTTPException(status_code=500, detail=str(e))