Spaces:
Sleeping
Sleeping
File size: 5,390 Bytes
2a69ed4 cfda68d 2a69ed4 0e91dea cfda68d dc0278a aa16976 0e91dea cfda68d 2a69ed4 cfda68d 319adbb cfda68d dc0278a aa16976 0e91dea cfda68d 0e91dea dc0278a 0e91dea dc0278a ce08ada 0e91dea dc0278a 0e91dea dc0278a aa16976 dc0278a aa16976 0e91dea dc0278a 0e91dea dc0278a aa16976 dc0278a aa16976 0e91dea dc0278a 0e91dea dc0278a 0e91dea ce08ada dc0278a aa16976 ce08ada dc0278a aa16976 ce08ada 0e91dea dc0278a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
from fastapi import FastAPI, HTTPException, Response
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.base import BaseHTTPMiddleware
from fastapi.responses import JSONResponse
import os
from dotenv import load_dotenv
import requests
from typing import Dict, Any, List
from pydantic import BaseModel
import time
import json
load_dotenv()
app = FastAPI()
class ContentTypeMiddleware(BaseHTTPMiddleware):
async def dispatch(self, request, call_next):
response = await call_next(request)
if isinstance(response, JSONResponse):
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
app.add_middleware(ContentTypeMiddleware)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"]
)
# Получаем переменные окружения
FLOWISE_API_BASE_URL = os.getenv("FLOWISE_API_BASE_URL")
FLOWISE_CHATFLOW_ID = os.getenv("FLOWISE_CHATFLOW_ID")
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: float = 0.7
def count_tokens(text: str) -> int:
# Простой подсчет токенов (слова + знаки препинания)
return len(text.split()) + len([c for c in text if c in ".,!?;:()[]{}"])
def clean_assistant_response(text: str) -> str:
# Удаляем лишние маркеры кода и форматирования
text = text.strip()
if text.endswith("```"):
text = text[:-3].strip()
return text
class CustomJSONResponse(JSONResponse):
media_type = "application/json; charset=utf-8"
def render(self, content: Any) -> bytes:
return json.dumps(
content,
ensure_ascii=False,
allow_nan=False,
indent=None,
separators=(',', ':')
).encode('utf-8')
@app.get("/")
async def root():
return CustomJSONResponse({"status": "FastFlowWrapper is running"})
@app.get("/v1/models")
async def get_models():
try:
# Запрашиваем список чатфлоу из Flowise
response = requests.get(f"{FLOWISE_API_BASE_URL}/chatflows")
response.raise_for_status()
chatflows = response.json()
# Преобразуем в формат OpenAI API
models = []
for chatflow in chatflows:
models.append({
"id": chatflow.get("id"),
"object": "model",
"created": int(time.time()),
"owned_by": "flowise",
"permission": [],
"root": "flowise",
"parent": None,
"system_fingerprint": "phi4-r1"
})
return CustomJSONResponse({"object": "list", "data": models})
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
try:
# Получаем последнее сообщение из диалога
last_message = request.messages[-1]
if last_message.role != "user":
raise HTTPException(status_code=400, detail="Last message must be from user")
# Подсчитываем токены запроса
prompt_tokens = count_tokens(last_message.content)
# Формируем запрос к Flowise
flowise_request = {
"question": last_message.content
}
# Засекаем время начала запроса
start_time = time.time()
# Отправляем запрос к Flowise с таймаутом
response = requests.post(
f"{FLOWISE_API_BASE_URL}/prediction/{FLOWISE_CHATFLOW_ID}",
json=flowise_request,
timeout=10 # Уменьшаем таймаут до 10 секунд
)
response.raise_for_status()
# Получаем и очищаем ответ
flowise_response = response.json()
assistant_response = clean_assistant_response(flowise_response.get("text", ""))
# Подсчитываем токены ответа
completion_tokens = count_tokens(assistant_response)
return CustomJSONResponse({
"id": "chatcmpl-" + os.urandom(12).hex(),
"object": "chat.completion",
"created": int(start_time),
"model": "phi4-r1",
"choices": [
{
"index": 0,
"logprobs": None,
"finish_reason": "stop",
"message": {
"role": "assistant",
"content": assistant_response
}
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
},
"stats": {},
"system_fingerprint": "phi4-r1"
})
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=str(e)) |