GLM4_0414 / app.py
nikravan's picture
Update app.py
8d09b0a verified
import gradio as gr
from huggingface_hub import InferenceClient
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
import torch
# پیکربندی quantization به صورت 4 بیتی
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
MODEL_PATH = "THUDM/GLM-Z1-9B-0414"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
device_map="auto",
quantization_config=quantization_config,
torch_dtype=torch.float16
)
inputs = tokenizer.apply_chat_template(
messages, # تغییر از message به messages
return_tensors="pt",
add_generation_prompt=True,
return_dict=True,
).to(model.device)
generate_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"do_sample": True if temperature > 0 else False,
}
out = model.generate(**generate_kwargs)
response = tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()