|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers import BitsAndBytesConfig |
|
import torch |
|
|
|
|
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=True, |
|
) |
|
|
|
@spaces.GPU |
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
MODEL_PATH = "THUDM/GLM-Z1-9B-0414" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_PATH, |
|
device_map="auto", |
|
quantization_config=quantization_config, |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
inputs = tokenizer.apply_chat_template( |
|
messages, |
|
return_tensors="pt", |
|
add_generation_prompt=True, |
|
return_dict=True, |
|
).to(model.device) |
|
|
|
generate_kwargs = { |
|
"input_ids": inputs["input_ids"], |
|
"attention_mask": inputs["attention_mask"], |
|
"max_new_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"do_sample": True if temperature > 0 else False, |
|
} |
|
|
|
out = model.generate(**generate_kwargs) |
|
response = tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True) |
|
|
|
yield response |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |