Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,939 Bytes
9905ea3 c70fff4 9905ea3 80f71e5 9905ea3 80f71e5 9905ea3 80f71e5 f7b901f 9905ea3 80f71e5 9905ea3 80f71e5 9905ea3 80f71e5 9905ea3 9762aaf 9905ea3 80f71e5 9905ea3 80f71e5 9905ea3 80f71e5 9905ea3 80f71e5 9905ea3 80f71e5 9905ea3 80f71e5 9905ea3 80f71e5 9905ea3 6a18952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
title: Profanity Detection & Replacement System
emoji: π«
colorFrom: red
colorTo: blue
sdk: gradio
sdk_version: 5.21.0
app_file: profanity_detector.py
pinned: false
---
# Profanity Detection & Replacement System
This app provides a comprehensive solution for detecting and cleaning profanity from both text and audio content. It uses state-of-the-art machine learning models to analyze content, identify inappropriate language, and generate clean alternatives.
### GitHub Repository
<img src="https://briantham.com/assets/img/projects/qr-code/Profanity-Detection-github-qr-code.svg?sanitize=true" alt="QR Code" width="300" />
## Features
- π Real-time profanity detection with adjustable sensitivity
- π Automatic text rephrasing to clean alternatives
- π€ Speech-to-text conversion with profanity filtering
- π£οΈ Text-to-speech generation for clean content
- π» User-friendly Gradio interface
- π Real-time streaming support for live audio processing
## Models Used
- Profanity Detection: `parsawar/profanity_model_3.1`
- Text Detoxification: `s-nlp/t5-paranmt-detox`
- Speech Recognition: OpenAI Whisper (large-v2)
- Text-to-Speech: Microsoft SpeechT5
## Requirements
- Python 3.10
- PyTorch with CUDA support
- Gradio
- Transformers
- OpenAI Whisper
- Other dependencies listed in `requirements.txt`
## Interface
The app provides three main interaction modes:
1. **Text Analysis**: Enter text to detect and clean profanity
2. **Audio Analysis**: Upload or record audio for profanity detection
3. **Real-time Streaming**: Process live audio with instant profanity filtering
## Technical Details
- GPU acceleration supported for faster processing
- Memory-optimized with FP16 precision where available
- Configurable profanity detection threshold
- Built-in error handling and logging
- Dark mode support
## Team Members
- Brian Tham
- Hong Ziyang
- Nabil Zafran
- Adrian Ian Wong
- Lin Xiang Hong |