nicole-ait
layout w/ tabs
65a1209
raw
history blame
4.59 kB
import os
import gradio as gr
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import TextLoader
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
from langchain.chains import ConversationalRetrievalChain
def load_embeddings():
print("Loading embeddings...")
model_name = os.environ['HUGGINGFACEHUB_EMBEDDINGS_MODEL_NAME']
return HuggingFaceInstructEmbeddings(model_name=model_name)
def split_file(file, chunk_size, chunk_overlap):
print('spliting file', file.name)
loader = TextLoader(file.name)
documents = loader.load()
text_splitter = CharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap)
return text_splitter.split_documents(documents)
def get_persist_directory(file_name):
return os.path.join(os.environ['CHROMADB_PERSIST_DIRECTORY'], file_name)
def process_file(file, chunk_size, chunk_overlap):
docs = split_file(file, chunk_size, chunk_overlap)
embeddings = load_embeddings()
file_name, _ = os.path.splitext(os.path.basename(file.name))
persist_directory = get_persist_directory(file_name)
print("persist directory", persist_directory)
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings,
collection_name=file_name, persist_directory=persist_directory)
print(vectordb._client.list_collections())
vectordb.persist()
return 'Done!'
def is_dir(root, name):
path = os.path.join(root, name)
return os.path.isdir(path)
def get_vector_dbs():
root = os.environ['CHROMADB_PERSIST_DIRECTORY']
if not os.path.exists(root):
return []
files = os.listdir(root)
dirs = filter(lambda x: is_dir(root, x), files)
print(dirs)
return dirs
def load_vectordb(file_name):
embeddings = load_embeddings()
persist_directory = get_persist_directory(file_name)
print(persist_directory)
vectordb = Chroma(collection_name=file_name,
embedding_function=embeddings, persist_directory=persist_directory)
print(vectordb._client.list_collections())
return vectordb
def create_qa_chain(collection_name, temperature, max_length):
print('creating qa chain...')
memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True)
llm = HuggingFaceHub(
repo_id=os.environ["HUGGINGFACEHUB_LLM_REPO_ID"],
model_kwargs={"temperature": temperature, "max_length": max_length}
)
vectordb = load_vectordb(collection_name)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectordb.as_retriever(), memory=memory)
def submit_message(bot_history, text):
bot_history = bot_history + [(text, None)]
return bot_history, ""
def bot(bot_history, collection_name, temperature, max_length):
qa = create_qa_chain(collection_name, temperature, max_length)
print(qa, bot_history[-1][1])
qa.run(bot_history[-1][0])
bot_history[-1][1] = 'so cool!'
return bot_history
def clear_bot():
return None
title = "QnA Chatbot"
with gr.Blocks() as demo:
gr.Markdown(f"# {title}")
with gr.Tab("File"):
upload = gr.File(file_types=["text"], label="Upload File")
chunk_size = gr.Slider(
500, 5000, value=1000, step=100, label="Chunk Size")
chunk_overlap = gr.Slider(0, 30, value=20, label="Chunk Overlap")
process = gr.Button("Process")
result = gr.Label()
with gr.Tab("Bot"):
with gr.Row():
with gr.Column(scale=0.5):
collection = gr.Dropdown(
choices=get_vector_dbs(), label="Document")
temperature = gr.Slider(
0.0, 1.0, value=0.5, step=0.05, label="Temperature")
max_length = gr.Slider(20, 1000, value=64, label="Max Length")
with gr.Column(scale=0.5):
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=550)
message = gr.Textbox(
show_label=False, placeholder="Ask me anything!")
clear = gr.Button("Clear")
process.click(process_file, [upload, chunk_size, chunk_overlap], result)
message.submit(submit_message, [chatbot, message], [chatbot, message]).then(
bot, [chatbot, collection, temperature, max_length], chatbot
)
clear.click(clear_bot, None, chatbot)
demo.title = title
demo.launch()